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Quantum Mechanics Course



Chapter 1

Formalism & Basic Ideas

1.1 Bra-ket Notation

We use a convenient notation for vectors: a vector (ket) may be written |¢). If it is in a space with
basis {|n)}, i.e. the nth basis vector is |n), we may write 1)) = > ¢, |n). We expand a general
vector in its basis as per usual. Its dual vector (bra) may be written as (¢| = > ¢} (n|. The inner

product between two vectors [¢) and |¢) may be written (1)|¢). Recall the complex conjugate flips
the order of the inner product: (1|¢)* = (¢[1)).

1.2 Operators

Recall an operator is an object which maps elements of one space to the same space. We show an
object is an operator by giving it a hat, like so: A. Recall in linear algebra that operators may be
represented, in general, as matrices. This breaks down a bit for infinite dimensional spaces, but the
important features, like eigenvalues and eigenvectors, do indeed generalise.

1.3 Postulates

Quantum mechanics is built on a foundation of postulates. I will list them and then revisit each in
turn. This section is intended purely as a summary: all will be explained in due course.

Postulate 1. The state of a system can be represented as a vector in a Hilbert spaccﬂ

Postulate 2. A space for a composite system may be represented as the tensor pmducﬂ of the
Hilbert spaces of each part.

Postulate 3. Observable quantities, i.e. ones you can take a measurement of (like position or
momentum), are represented by hermitian operators. The possible results of measuring an observable
are given by the eigenvalues of the corresponding hermitian operator. For a system in a normalised
state |, with an operator A with eigenvalues a; and eigenvectors {la;)}, the probability of measuring
the quantity A as having the value a; is given by | {a;j|y) |

Postulate 4. Suppose a system has state [1)) = > cp|n). If it is measured as being in state |j)
then the system collapses, in the sense its state becomes ) — |j). Repeated measurements will
always show the system is in state |j).

Postulate 5. The time evolution of a system is given by the time-dependent Shrédinger EquationE]

1.4 States & Vectors

A state is an object that encodes information about the physical state of a system. A system may
have a number of different configurations. For example, let’s imagine the system might be in the

1For our purposes, consider this a vector space, which may be infinite-dimensional, equipped with an inner product.
2Luckily, very limited understanding of tensors is needed for this course.
3In theory this can be derived, and is therefore not a postulate, but for our purposes we may as well take it as one.



state |1) or ||). The key concept is that we have no idea what state the system is in until we measure
it. To be more precise, it doesn’t even make sense to ask the question ‘what state is the system
in?” until it is measured. It simply does not occupy a single well-defined state. However, suppose
we know that, upon measurement, there is some probability that we will measure it in state |1) and
some other probability we measure it in |]). The use of vectors to describe states neatly and cleanly
packages all of these concepts up. We can describe the system with the vector

) =D +B1)-

It is a postulate that the probability of observing the system’s state as [1) is (1 [¢) = aa* = |a/?.
Similarly, the probability of observing the system’s state as |}) is (| [¢/) = 38* = |3|?. This is how
one obtains probabilities of outcomes of measurement from state vectors.

We say a state is normalised if the probabilities add to 1, such that |a|? + |3]?> = 1. In some sense,
the system is in both states, but also in neither.

1.5 Observables

An observable is a quantity such as position, which might take the value ‘here’ or ‘there’, or energy,
which might take the value 1J, 10J, etc. In general, it is represented by a hermitian operator. As
an observable can in theory be measured, its value must be a real number - you cannot measure a
physically relevant quantity and get a complex number.

1.5.1 Hermitian Operators

Hermitian operators have some important properties that make them suitable to describe observable
properties.

Claim 1. Hermitian operators have real eigenvalues.

Claim 2. FEigenvectors corresponding to different eigenvalues are orthogonal, and in the degenerate
case one can find orthogonal eigenvectors by the Gram-Schmidt procedure.

These will not be proven here, but proofs can be found in any text on linear algebra.
It is a postulate that the possible values of an observable quantity are the eigenvalues of its cor-
responding hermitian operator. You can see that the fact these are always real checks out nicely.
Furthermore, the orthogonality of the eigenvectors means that they are linearly independent and
therefore form a basis. This is useful as it means we can fully expand a general state of the system
in terms of the possible states that measurement of a particular observable can take.

1.5.2 Discrete Spectra & the Hamiltonian

The operator corresponding to the energy of a system is called the Hamiltonian, denoted H. This
satisfies the relationship H |n) = E, |n), where {|n)} are the energy levels of the system and E,
is the energy associated with the system being in the nth level. This is an example of a discrete
spectrum, as there is a discrete set of eigenvalues, i.e. they take individual, separate values. There
may or may not be infinitely many of them.

The Hamiltonian (in most cases) represents total energy, which usually is kinetic 4+ potential energy,
although this changes a bit when angular momentum or electromagnetic fields are involved. In the
simple case of a particle free to move within a potential we may write

n2
& D .
H=—+ V()
1.5.3 Functions of Operators

A function can be understood in terms of its Taylor (Maclaurin) expansion. As powers of operators
are just repeated applications of them, functions of operators such as V(%) are well defined.



There us a trick we can use to investigate unknown operators and objects in general in QM: sandwich
the object in between an (x| and a [¢). Consider V' having Taylor expansion V(t) =" cnt™:

(2| V(2)[¢) = ch (|2
—ch x\w

and as z is just a number we can move the bra and ket around:

— (2] 3 cna™ 1)

V(x)

Hence (2| V(2) [¢)) = (x| V(2) [¢).

1.5.4 Continuous Spectra & the Position Basis

A useful observable of a system is position. For example, where a particle is located. We represent
the one-dimensional position state as |x), where x is the position along some line. In analogy to
an expansion over all discrete basis vectors, we expand a general state (in the basis of position
eigenstates) like S(ﬂ

i=/ Z (@) |2} do

with the ket |z) satisfying the following relations:

Zlx)y =x|x) (z are the eigenvalues of the position operator)

(o' |z) = 6(x — 2') (orthonormality)

such that [¢) is normalised:
(Yl) = //_ P(z)Y* (2') (2'|z) do'dx = 1
= [ =1

The quantity ¢ (z) = (x|¢) is called the wavefunction. Similar to the discrete case, we interpret
(x|v) as a probability associated with the position x, but in this continuous case it is a probability
density function:

P(£C2>$C>SU1)=/
x

x2

|<sc|1/1)|2dx=/ ¥ de

1

It is important to notice that the physically relevant quantity is not the wavefunciton itself, but the
square modulus of the wavefunction. Therefore, any overall phase of the wavefunction will disappear.

1.5.5 Resolution of the Identity
It can be easily shown (by acting with it on any ket) that the quantities

Z i) (i] =1 (energy basis) / |x) (x|dx =1 (position basis)

(amongst others) are equivalent to the identity operatorﬂ We can then insert an I anywhere and
leave the expression unchanged.

4The integral is guaranteed to converge as we are working in a Hilbert space.
5T will omit the bounds of integration from these kinds of integrals, allowing them to be inferred from context.



1.5.6 Representing Operators

Recall that if one uses a basis of eigenstates of an operator, that operator will be diagonal with
columns made of the eigenstates scaled by their eigenvalues. This carries over to bra-ket notation,
although it looks a little different. An operator Q with discrete eigenvalues ¢; and eigenstates |g;)
can be represented as

Q = Zqz‘ |gi) (ail

An operator with a continuum of eigenstates, e.g. & can be represented in the same way, although
the sum becomes an integral:

i:/x|x><x|da§

Another perspective on this is take the operator, say p, and insert an identity to the right. As the
identity does nothing to the operator, we simply get

/ﬁlp> (p|dp = /plp> (p|dp

1.5.7 Expected Values

Consider the quantity Q = (1| A |1) for some operator A. Inserting an identity operator in the
A-basis:

Ala;) = a; |as)
Q= Z«m/ua» (asl)

= Zai| (a|p)|?

As a; is the ith possible outcome of measuring A, and | {a;|1) | is the probability associated with
this, then @ is an expected value:

(W] A ) = (A)

1.5.8 Compatible Observables

Consider two observables A, B. Suppose we would like to measure A followed by B afterwards on
the same system, originally in state [¢). If we measure the system as in the eigenstate |a;) of A on
the first measurement, the state collapses to |a;) such that the measurement of B is performed on
this collapsed state. If we want the probability the system is in eigenstate |b;) of B, the scenario
looks like this:

P(ai = bj) = | (bjlai) (ailv)
Now if we did the measurement the other way around:
P(bj — a;) = | (ailbs) (bjlv) |2

Which are not in general the sameﬂ unless the two operators commute, in which case |a;) , |b;) are
simultaneously eigenstates of both operators, and the first inner product is zero due to orthogonality.
This makes sense as repeated measurements of a system in an eigenstate will always yield the same
eigenstate. Hence, the probability of the system being in a different eigenstate is zero. If two
operators commute, we say they are compatible, and otherwise they are incomptible.

6For a proof see Fabian Essler’s notes.



1.5.9 Operators on Wavefunctions

Consider (z) = (¢|2]¢)). Inserting an identity:
(@) = [ (wla1e) (alu) da
= / Y*rpde.

And we think of x as representing & when acting on ¢ within an integral - instead of |¢) outside of
one. We call this an operator on wavefunctions.
1.5.10 Momentum Operator and its Basis
The operator p satisfies
(2| p|¥) = —ih0y (x|¢))
And from thisﬂ identify the corresponding operator on wavefunctions as
p = —ih0,
We can expand in a basis of eigenstates of the momentum operator, p. The eigenstates satisfy
plp) =plp)
Applying (x| to both sides:
(z|p|p) = —ihdy (z|p) = p (z|p)

ipx

= (z|p) = Ae’r

So the position wavefunction of the momentum eigenstates are plane waves. Let us now find the
constant of proportionality. We would like the p eigenstates to be normalised in the same way as
the Z ones:

(plp) = d(p—p')
Resolve the identity:

~ [ plo) (el do

— |A|2/e—ipz/heip/m/hdx
use u = x/h:

= h|A|2/ e~ =) gy,

—0o0

=2m6(p—p’)
as it can be shown that the integral is precisely the delta function we want up to a factor. Hence:

]_ ipx
e h
2mh

(z[p) =

Lets look at the momentum wavefunction, by inserting an identity:

wp = <plw>
=/wwmww
1 ip’a:

So the momentum wavefunction is related to the Fourier transform of the position wavefunction.

"Using the fact |z) can be taken out of the derivative, we can write (x|p |¢) = (x| — ii0z|v)

10



1.5.11 Operators in Different Bases

We would like to find a representation of the position operator in the momentum basis. We can do
this change of basis as follows. Making use of the ‘sandwiching’ trick, and resolving the identity:

(I} = / (o) (allep) de

= [ ——axy,dx

— ihd, / (ple) {xl) de
= ihd,
= (plid,ly)

So # is associated with ¢hJ, in the momentum basis.

1.5.12 Canonical Commutation Relation

We can use the properties of the momentum operator to find an invaluable relationship between &
and p. Using the same ‘sandwiching’ trick as before:

(@] [2,p][¢) = (x| 2p[v) — (2] 2 |¢))

Here we use a trick where we consider (x| % as (21 |z))f, and the fact # = 2T as the position operator
is hermitian. You can visualise this trick as replacing & with #f and acting to the left on the bra.

=z (x| ply) + ih0y (x| & |¢)
= —iha0y (2|Y) + ihdy (2 (x]h))
= —ihad, (z|) + ihwd, (x]P) + ik (z]y)

Hence [, p] = ih.

1.6 The Uncertainty Principle

This is a theorem which carries a huge amount of weight. It is important to know and understand
the proof. There are many different ways of showing it, so here is my favouriteﬂ Consider two
operators A, B. We can write the variance in A as follows:

(AA)? = ([ (A= (4))* [v)
As A is hermitian, we have

= (f1f)
where |f) = (A — (A)) [¢). Analogously, let |g) = (B — (B)) [¢). Hence:

(AA?(AB)? = (fIf) {gl9)

Applying the Cauchy-Schwarz inequality:
> (flg) (glf) = [ {flg) I
For any complex number z = Re(z) + ilm(z), |22 = (Re(2))? + (Im(z))? > (Im(z))2. Hence
(AA*(AB)* > (Im((f]9)))?
- (50 )

8 Adapted from Griffiths.

11



Expanding out (f]g) — (g|f) you will find it equals ([A, B]). Hence

AAAB > %<[A,B]>

In the case of position and momentum we have

AEAD > h/2

1.7 Interference

The single-particle double slit experiment is commonly used in pop science to demonstrate the wave
nature of particles. Let us first look at interference of classical wave phenomena.

For a two-source scenario, let the amplitudes at some point be w1, us. The intensity (the measurable
quantity in this case) is defined as

I = ((u1 4+ u2)(ur +u2)")e
= |u1|* + |ua|® + 2(Re(uiub)),
N—————

interference term

In the quantum double slit experiment, the particle is allowed to travel through a system of two
slits without measurement. For the particle after it has travelled through the slit system, the (non-
normalised) state vector is in the following superposition:

[¥) = [L) + [R)

With components for the particle travelling through the left or right slit. Hence we can find the
wavefuntion and therefore the probability density:

¥ = (z|L) + (z|R)
Yy = | (2[L) [* + | (2| R) |* + 2Re((x|L) (x| R)")

interference term

However, if we place a detector on the right slit, the state vector (again, after travelling through the
system) has the form (for example)

So the probability density is | (x|R) |?, with no interference term.

1.8 Worked Example: Commutators and the Momentum
Operator

Question 1. Find [f(Z),D].

We begin by using the sandwiching method, where we put the commutator between the following
kets. Take note of where the function of & becomes a function of z: (z|f(&)[) = (x| f(z)|¢).

(@ll§(@). 810} = el @)1Y) — (alpf(2)10)
= [ Galf @) @sl) do’ + ino, (2|7 ()10)
— —ihf(a) [ 8o~ )0uda’ + ihd,(f(x)0)

= —ihf(2)0p) + ihf (x)0pt) + ihapdy f
= (x]ihd, f 1)

So the commutator has value ih0, f.

12



Chapter 2

The Schrodinger Equation

This equation dictates the time evolution of the state of a quantum system, a bit like F' = ma. It
has the following formE]

ihdy |¢) = H [)
You will use it time and time again. It has the following form for bras:
—ihd; (| = (v| H

2.1 Ehrenfest’s Theorem

This is a useful theorem about the time evolution of expected values. Consider an operator A:

(A) =2 (| Aly)

= On(WNAL) + (] 0(A) [v) + (4] A, [¢)
And using the Schrédinger equation:

4
dt

_WIHAW) g WA )
= 772% + <8t14> + T
= (@A) + - (1A, 1)

2.1.1 Deriving Newton’s Law

For the case of the position operator, which is time-independent;

d . 1. p?
2R = (4. 2
dt< ) th "2m
The position operator commutes with V(x) as it’s a function of x only, but doesn’t commute with
the momentum operator:

= o (2. 54)
= ol A8+

= (p)/m

Hence m- (&) = (p) as expected. So far so good. We would like to reproduce F' = ma so we need
the time derivative of (p):

+ V(@)

9 5) = 2 (p.52/2m + V)
= = (5, V))

IThis is known as the Time Dependent Schrédinger Equation, or TDSE.

13



As p commutes with functions of itself, we only need to consider V;

(@[[p, V1Y) = —ihdy (x| V1) 4 ihV D1
= Vihdyp — ihd, (V)
= —ilp0,V
= (x| — ihd, V)
Where our aforementioned ‘sandwiching’ trick has been used. Hence:

d, .
(B =—(0:V)

From which it follows that
d2
mﬁ@ﬁ =—(0.V)
2.2 Time Evolution of Systems in Energy Eigenstates
As the Schrédinger equation links energy (the Hamiltonian) and time evolution, it would make sense

if energy eigenstates get special treatment in quantum mechanics. Let us consider a basis of energy
eigenstates |n), i.e. H [n) = E, |n). What is the time evolution of a general state in this basis?

) = e ln)

As the states form a basis the only way the system can time evolve is if the components of the
different basis vectors change over time, i.e.:

[0(1) = en(t) [n)
Let us apply the TDSE to [).
ihY én(t)In) =HY cn(t)|n) =Y cnByn)

Now bra through with (m| # (n|, making use of orthogonality:

(t)
(t)
= [¥())

1B
0)671;Emt/h

> en(0)e T B )

them,

—t Cm

em(
Cm (

So for a system initially in an energy eigenstate, say the mth one, then ¢, (0) = d,:
|¢(t)> — e—iEmt/h ‘m>

Hence it remains in the original eigenstate, only gaining a phase which would disappear when the
square modulus is taken. For this reason the probabilities associated with energy eigenstates are
time independent, and they are therefore referred to as ‘stationary states’.

2.3 Position Representation of the TDSE

It is useful to work with operators on wavefunctions instead of operators on kets in certain problems.
We would like to translate the TDSE into this language. It is straightforward to do. We will introduce
a slightly different notation, for which the reason will become clear shortly; let (x|i) = ¥(x,t). Now
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bra through with (z|:

ihdy (x|y) = (@|H|v)
1
thd, ¥ = o (zp*[Y) + (x|V])
ih .
= _%aw <$\p|¢> + Vv
ih .
=5 o (—ih0, ) + VU
K2 9
= LU VY
2m

So we have

o = — 2920 + v

Note we can make use of the concept of operators on wavefuncitons to associate H with —%8% +V.

2.3.1 Solutions by Separation of Variables

The standard way of solving these linear PDEs is by separation of variables (SOV). Let us separate
into ¥(z,t) = ¢¥(x)¢(t) and sub in:

. h2
ihpo = —o— v + Vo
Zhgb B h2 ,(/}//
o " e Y

As the LHS is a function of ¢ only and the RHS one of x only, they must both equal a constant, E:

[t v]v =By

Which we can recognise as a generalisation of the eigenvalue equation H |n) = E,, |n). This equation
is known as the time independent Schrédinger Equation (TISE). This shows that the separation
constant E does indeed correspond to energy. It also shows, crucially, that any 1) obtained by
solution of the TISE is an eigenstate of the Hamiltonian; a stationary state. Now let’s
consider the time dependent part:

ihd = E¢
— o(t) = p(0)e " FH"

For a set of energy levels F,, we can superpose solutions due to the linearity of the TDSE:

n

This is the most general solution.

2.4 The Schrodinger Equation in Three Dimensions

2.4.1 Generalisation of the Momentum Operator

A trivial generalisation of p is the association p = —ihV. Momentum is separated into 3 components
pi which satisfy [&;,p;] = ihd;;. The TISE becomes

P%W + V] ¥ = B

15



2.4.2 Probability Current

Probabiliy has a density, namely p = ¥¥* and in some sense the total probability is conserved by
the fact it adds up to 1 - so we would like to derive a continuity equation for it. Due to our choice of
the Hamiltonian this only applies to particles in potentials. We will use the following representations
of the TDSE:

ihoyU = HU
—ihO,U* = HU*

Start with the time derivative of the probability density:

5tp = \I/at\ll* + \Ij*at\If
1 N N
= —(V*HY - VHY*
7 )

;(W ((;hmv)z+v>\p\p((?y+v>w*)
h

5 (UV2* — U*V20)

Now we use the following vector identity you will find in your formula book:

V- (¢F) =F (Vp) + (V- F)
= ¢(V-F)=V.(¢F) -F-(Vp)

Now use ¢ =¥, F = VU*:

UV2P* = V- UVT* — VI* . VT
And with ¢ = U*, F = VUt

V20 =V - UV - VU - VI*

Subtracting the two equations:

h
Op=V- ((\IIV\II* — \II*V\II))
2im
A continuity equation takes the form 0;p = —V - j so we identify
ih
j= —((UVI* —U*VY
i=5 )

16



Chapter 3

Exact Solutions to the Schrodinger
Equation

In this chapter we present various important situations in which we can find exact solutions for
the wavefunction. Such situations are rare and most scenarios require perturbative or other inexact
methods. We will visit these later.

3.1 The Free Particle

In this case V = 0 and the TISE becomes

e

2m dz?
With solutions

w _ Aeim\/Qm,E/h+Be—ix\/2mE/h

Now we add on the time dependent part:

U = Aei(m\/QmE/h—Et/h) +Bei(—z\/2mE/h—Et/h)

So we if we make the identification k? = 2mE/h? and w = E/h we have

U = Aei(k‘r—wt) +Be—i(k’r+wt)
So the free ‘particle’ has properties of a wave! Note we can identify E = hiw (Planck relation) and
then

h2k?
2m
k* = 2mw/h

FE =

We can find, in some sense, the ‘momentum’ of the wave by looking at the group velocity, which
represents the rate of transfer of information about the wave’s localisation:

kdk = mdw/h
= MUgroup = Mk
p=hk

This is the de Broglie relation.

3.1.1 Time Evolution of the Free Particle

If we prepare a particle with a specific wavefunction as an initial condition, the Schrodinger equation
dictates this wavefunction will change with time.

17



Notice that any value of k, and therefore F, yields a valid solution to the TISE. As it is linear, the
most general solution is a superposition; this takes the form of an integral rather than a sum as k is
a continuous variable. Hence:

1 ° ;
U(z,t) = E/ C(k)ez(km—wt)dk

Where the numerical factor has been extracted from c¢(k) to make the expression look more like a
Fourier transform, and k£ has been allowed to run negative to leave only a single exponential.
But what is the function ¢(k)? We have

W(z,0) = \/%? /_ " c(k)ean

Which is simply the (inverse) Fourier transform of ¢(k). Hence, we may freely invert the Fourier
transform:

_ L z,0)e ke dy
c(k) = m/_ookll( ,0) d

Hence, for a free particle, given some initial condition ¥(x,0), we can find the wavefunction at all
future times ¥(z,t) by using the Fourier transform on the initial conditions.

3.2 Potential Wells in One Dimension

3.2.1 Bound and Scattering States

Consider a ball rolling down a hill. If it has enough kinetic energy to make it up the other side and
actually escape the hill, the ball is in a scattering state. If it can’t make it over and begins to roll
down, it’s in a bound state.

(a) Bound state (b) Scattering state

Figure 3.1: Particles with enough energy can escape a well; scattering states. Others, with less
energy, are bound within.

3.2.2 Constraints on the Wavefunction
There are various constraints and boundary conditions that a wavefunction must satisfy. These are
1. % continuous

2. 1) normalised

w

. % vanishes in regions of infinite V'

>~

. 1’ discontinuous by a potential-dependent amount

18



We will now demonstrate the final two points. Consider the TISE:

h2 d2
[Zmde

+V}1/1E1/1

just by looking at the equatiorﬂ it is clear that as V — oo, E — oo for a continuousﬂ 1 unless
¥ — 0. Hence to maintain a finite (and therefore physical) energy we require that v vanishes in
regions V is inﬁniteﬂ

Now let us consider the discontinuity in the derivative of the wavefunction. If the potential is
discontinuous at some point (we can arbitrarily make this the origin) We integrate the TISE over a
very small surrounding region:

2 € 2 € €
f de+/ V’L/de:E/ Pdx

“2m J_. dz?
The continuity of ¢ means the RHS term goes to zero. Therefore the equation reads
h? dip ¢
dvp 2m (€
A— ) = — Vad
(25) =5 [ v

This specifies the discontinuity. Clearly if V' jumps by a finite amount then the area of the infinites-
imal sliver will go to zero. But if V' jumps by an infinite amount, then there will be some area and
the derivative will inherit a discontinuity.

3.2.3 Parity of Solutions

It can be proved that for an even potential, i.e. V(z) = V(—z), solutions to the TISE are either
2

even or odd. Consider replacing x — —z: d(fT)z = dd—; so the TISE looks the same, but with ¢ (—z)

instead:
hZ 2
[_2md:r2

+v] w0 = Bu(-a)

So if ¢(x) is a solution, so it 1)(—x). There are now two possibilities. First, ¥(x) could be linearly
independent from ¢ (—z). Then we can construct even or odd solutions:

be = 0(@) +9(-2)
Y- =1p(z) — ¢(-x)
Alternatively, it could be linearly dependent:
Y(z) = AY(—x)

= () = A%(x)
= A==1

So either ¢(z) = ¥(—x) or ¥(r) = —p(—=x); even and odd solutions. So for an even potential,
wavefunctions have a well-defined parity.

3.2.4 Infinite Square Well
Consider the well defined by

)0 0<z<a [region 1]
" |oo otherwise [region 2]

L Admittedly this is a non-rigorous approach.

2].e. a finite ¥’.

3In a delta function potential, the region in question is a single point, and the probability of finding the particle
at any single point is zero - consider integrating the probability density with both bounds being the same. Therefore
in this case the potential doesn’t go to zero and instead maintains continuity.
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We tackle these problems by considering the TISE separately in different regions, and then imposing
the aforementioned conditions on . In region 1 we have

n? o d?
 2mdz?

Y =Ey
With boundary conditions
$(0) =4(a) =0

The solutions are

h2k?
- 2m

= Asin(kx) + Bcos(kz); E
So applying the BCs, B =0 and
k=nn/a;n €Z
h2n2n?

= En = 2ma?

So the energies are quantised. The constant A can be determined by imposing the normalisation
condition and is equal 1/2/a. Our final solution is

We can also set up the well with initial conditions, in which case we plug v, into the general solution
of the TDSE:

U, (2,t) = P (x)e Ent/R
\Ij(xa t) = Z Cnn, (x)eiiEnt/h

= U(z,0) = \/zz ¢p sin (?)

Which is a (sine) Fourier series, and the coefficients can be determined using the orthogonality of
sine and cosineﬂ then subbed back in to determine ¥(z,t).
3.2.5 Delta Function Well

V==V 6(z)
~—
>0

We will consider first the bound states, which in this case ar€E| E < 0. We define region 1 to be
z < 0 and region 2 to be z > 0. We have

n? _d?
“amdr V2 = B2

With solutions

{2;({{521/)1 = Ein

) = AeF® + Be™h®
Py = CeF® 4 De ke

4See mathematical methods course
5Bound states are usually defined as those with energy such that escape at infinity is impossible. In this case the
potential goes to 0 at infinity so E < 0 is the bound state.

20



Where k? = —2mE/h?. To stop the wavefunction blowing up we have B = C' = 0. So we have

Py = Aeh”

hy = Dek®
P = Aker®

Wy = —Dhkeke

Now we can calculate the discontiuity in the derivative:

(Adw> __2mh / " (2)wdz

dz noJ_.
2mV,
= - h2 0¢(0)
Applying the BCs:
A=D=1(0)
2mV
—k(A+ D) = —=524(0)
mV()
= k= =
mV§
= E= 5

Now let’s look at scattering (£ > 0) states. The solutions now look like

1][}1 — Aeika: +B67ik:n
Py = Cletkz + De~tkz

with k% = 2mE/h. Suppose we have a situation where particles are incident from —oo. Also recall
a factor of e *Ft/" ig multiplied on to each solution. This makes the solutions into plane waves,
which means we can interpret A as incident amplitude, B as reflected amplitude C' as transmitted
amplitude and D as zero as there is no propagation right to left in region 2.

3.2.6 Transmission and Reflection Coefficients

Consider the scattering situation where we have two regions where the wavenumber may be different,
i.e. k1, ks. Assuming waves are incident from left to right, the solutions in general will look like

wl :Aieik1m+ATe—ik1m
Py = Agethe®

Transmission and reflection coefficients take the form of probabilities of transmission and reflection.
They are defined in terms of probability current:

1|
i
il
We can convert the definition of probability current from the previous chapter into a one-dimensional
version:

j= %(\II&C\II* — 0%, W)
The wavefunctions that we want are

U, = A,eikrz=Et/h)

U, = A, i(~kiz=Bt/h)

U, = A,eikaz—Et/h)
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After some algebra we get

. Tikq| A; |2
Toom

kA

m

C hko|A?
jt =
m

Now depending on the conditions on v, we may get different results for the coefficients as they
depend on the amplitudes; different conditions yield different equations for the amplitudes. For a
finite step potential, both 1) and v’ will be continuous and the coefficients will be

4k1ko
(k1 + k2)?

R ky — ko) ”
-\ k1 + ke
For the delta function potential we covered previously, we have that k1 = ks = k. The continuity of
1) yields

A+ A = Ay
And the derivative’s discontinuity yields

2mV0
k2

ik(A; — Ay) — ¥(0) = ikA,

Let K = 2722‘/0 and notice ¥(0) = A;. Then we get

Ai — A, = A1 — iK/k)

Which gives

1
= 1 k2

1
R =T arye

And in both cases T'+ R = 1 as expected.

3.2.7 Finite Square Well
The situation is

v 0 |z|<a [region 1]
| Vo otherwise [region 2]

We would like to consider first the bound states, i.e. E < V4. The solution in region 1 is the same
as in the infinite case:

B hzk%
- 2m

Y1 = Asin(kiz) + Bceos(kiz); E

In region 2 we have

h? d?
 2mdz?

2m(E -V
5 = _2miE ~ Vo) = 0) o
[ —
=k2>0

o + Voypo = Evh
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Hence the solutions are exponentials:

by = Cek2® 4 De k2% 4 < _q
> Eek2® 4 Fe—hk2r 45 ¢

To stop 19 blowing up at co we require D = E = 0:

Cek2® T < —a
Y = § Asin(kiz) + Bceos(kiz) |z| <a
Fe ke T>a
CkyeF2® < —a
Y = ¢ Ak cos(kiz) — Bkysin(kiz) |z <a
—Fkoe k2= T>a

As the potential has only a finite jump, ¢’ is continuous at x = +a. Recall 9 is always continuous
too. Imposing these boundary conditions yields the following system of equations:

e k29(C + F) = 2B cos(k1a)
e k29(F — C) = 2Asin(kya)

%e*kW(F + C) = 2Bsin(ka)
%e*kw(C — F) =2Acos(kia)

Recall that solutions of the TISE with an even potential, such as this one, are even or odd - let’s
look for these solutions. A = 0 yields the even solutions, implying

k‘g = kl tan(kla)
While B = 0 yields odd solutions, giving
]fg = —kl cot(kla)

Note that

2mVj
B=2

—kf

So the equations become

ki tan(kia) = T k3
2
ky cot(kra) = — ”ggvo — k2

It can be Showrﬁ that there is always at least one bound state solution. Notice also that despite
E < Vy, which would mean that classically the particle could not escape the well, the wavefunction
is non zero outside the walls of the well. This is the phenomenon of quantum tunneling.

3.3 The Harmonic Oscillator

This is one of the most important situations that can arise in all of physics. It is important to know
and understand it well. We will begin with the Hamiltonian for the quantum harmonic oscillator

(QHO):

R 2
H =2 1 242
- 2m+ 2mw €

6See Griffiths.
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3.3.1 Ladder Operators
We will now make an inspired guess at two operators which, as you will see, will allow us to find the
eigenfunctions of the Hamiltonian and the corresponding energies.

1
Gy = (mwi — ip)

a_ = mwx + ip
h( p)

. These operators have the following useful property:

‘H_"

Notice that a4+ =

1

2mwh
1
:m((mw@ + 9% £ imwl#, p))
1 . R
=5 ((m(,u;c)2 + p? F mwh)

~—

((mwi)? + p* + imw(ip — pi)

"1
hw 2
- s+

3.3.2 Eigenfunctions and Eigenvalues

We claim that if |¢) satisfies the TISE with eigenvalue F, i.e. H |[¢)) = E|¢), then ay |¢) also
satisfies it with eigenvalue E + Aw. This can be seen as follows.

Hay 1) = hw (aid; + ;) ax )
= hwatizay [¢) £ %&ﬁ: )
hw

= a+E ) £ hway |¢)
= (£ £ hw)ax [¢)

— i (H x ;) 9+ 2an )

So a4 increases the energy and a_ decreases it, like stepping up and down the rungs of a ladder.
However, this cannot go down forever, as at some point one would reach oscillations with negative
energy which are un-physical. There must be a lowest energy state. Let’s find it, find the corre-
sponding wavefunction, and then check the energy. Consider the fact that the inner product of two
vectors is > 0:

=FE>
So we have a lowest eigenvalue. Hence there exists an eigenstate with lowest energy, satisfying
G—10) =0
= (mwi + i) [0) =0
——(mwZ +ip =
V2mhw

To convert this into an equation for the wavefunction, we bra through with an (x| which yields

\/2;7M<mwx+h )1/}0—0
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This is a differential equation that is easily solvable for the ground state wavefunction:

G = —(muwa /B

mw .2
= qhp = Ae~BRe

1
The normalisation constant is calculated as usual with (0|0) = 1 and comes out to be (%) *. Let’s
check the energy by plugging into the TISE:

Evpg = —12%/ + 1mw2$2¢0
2m 2

mw mwz>
0 = 71% ( — 1)

h
hw
= Eg = 7%

So this is indeed the minimum energy state. To get all other wavefunctions, simply operate on g
with G4 repeatedly. We can see that the energy of the nth state is fiw(n + 1/2) as the energy is
increased by hw in each step. There is one final problem to resolve; we have seen how a4 generates
states with higher or lower eigenvalues, so it seems to be the case that acting on a state with a
should also yield higher and lower states as well:

a+ \n> = c4 \ni 1>

Now all that remains is to find the constants of proportionality. We do this by considering the inner
product:

lc+]? = (nlaga|n)
H 1
= <n|ﬂ + §\n>

= —:l:—
n+2 5

So cy =+/n+1and c_ =+/n.

3.3.3 What Oscillates?

It is not clear what is actually doing the oscillation. It is enlightening to look at the expected value
of position, in the nth level:

(@) = (n(t)]z[n(t))
By adding the raising and lowering operators, we can rewrite Z as
T=1\/—(4+a-)

Also, the states |n) only solve the TISE. To make them solutions of the TDSE, we need to add on

the factor of e~ tEnt/h,
. h . .
(@ =\ g (i + 2 )lm) =0

So it seems that the harmonic oscillator isn’t doing any... oscillating. It turns out this is a feature
of the eigenstates; they don’t resemble the characteristic oscillatory states of a classical oscillator.
However, it is possible to prepare states, known as coherent states, that oscillate in a ‘nice’ way. It
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is also possible to see the oscillatory behaviour from general superpositions of states:

Y(t) =) e T
J

(2) = (@ ()I2[ (1))
=4 / % Z Zc;lfckeiw(j+1/2)t€—iw(k+1/2)t <j‘(€l+ + &_)‘k>
ik

h -
= \/;ZZC;Ckezwt(Jk) Gl (\/ﬁlk +1)+ \/E\k — 1)
j ok

h . .
- \/;Z > cene U (VE 16 1 + VEGj k)
ik
h * —iw - * i
j k
h Sk —iwt * iwt
=\ G 2o VilGeim1eT +¢fieiet)
j

. * —iwt * ptwt Lk twt Lk _ PRI
Notice cjc;_1e +cj_1cje"" = 2Re(cjci_1e'") and therefore let c;c}_; = e’

—twt * wt . .
Tejire” N cf e’ = 2 cos(wt + ¢)

= () = ”% Z \/jaj cos(wt + ¢;)

Hence we see oscillatory behaviour.

ct
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Chapter 4

Transformations and the
Heisenberg Picture

This chapter is intended to give a very brief introduction to the relationship between operators and
transformations, such as rotations or translations. The transformations we consider may be thought
of as being carried out on the state itself, rather than the co-ordinate system: for example, in a
translation we would move the system rather than the origin of our co-ordinates. We begin with
one-dimensional translations.

4.1 Translations and the Momentum Operator

We introduce a translation operator 7'(¢) that satisfies T'(¢) |z) = |z + €), i.e. translation by a small
amount e.

4.1.1 Translations on the Wavefunction

T(e) [(x)) = [¢)
It should be clear that if we move the system by ¢, the translated wavefunction should look the
same at the new point as the original did at the original point, ie. ¢'(z +¢€) = 1 (x) where
(x|T'(€)|) = ¢'(x). We can use this to prove the following property of T'(e).

W+ o) = ()
= 4/ (2) = ¥(x — ¢)

Notice we can express the RHS in bra-ket notation
vla 9 = [0’ ~ (x ~ Do)’

— [ (o de') (') o
= {z — el9)
So we have the equation
(@|T()) = (& — elv)
= (z|T(e) = (x — €
= THe) o) = o — €)

Consider the inverse translation, satisfying 7~ (¢) |z) = |z — €) (i.e. translation by —¢). We therefore
have

Tt (e) =T (e)

i.e. T'(e) is a unitary operator.
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4.1.2 Relationship with the Momentum operator

Consider a very small translation by e. We propose T(e) has the form I + G where G is some small
matrix. We know ¢'(x) = (z — ¢€), so we may Taylor expand for small epsilon:

(@|T(e) [v) = () = ¥(z —¢)
~1)(x) — €Dyt
= (2| + G|v)
= P(x) + (z|G[)
= G = —€0 Y
G=-5p

Hence T(e) =1- %p for a very small translation. We can make any translation by successively doing
a large number of these infinitesimal translations: let d be the total shift caused by IV infinitesimal
translations such that d = Ne. Then we have

Which is precisely the limit definition of a matrix exponential - therefore we have

~ idp

T(d)y=e n

4.2 Rotations and the Angular Momentum Operator

The rotation operator, for a rotation by small angle € about the z axis satisfies
R(e, z) |x,y, 2) = |z cos(e) — ysin(e), x sin(e) + y cos(e), 2)

Which can be deduced by considering the action of a rotation matrix on r.

4.2.1 Rotations on the Wavefunction

In the same vein as the position operator we require the rotated wavefunction at rotated point is
the same as the original at the original point:

V' (@Y, 2) = (.9, 2)
= ' (x,y,2) = (x cos(e) + ysin(e), —x sin(e) + y cos(e), 2)

Where the second equality comes from undoing the transformation with an inverse rotation matrix.
We now have the equation

(x|R(e, 2z)|1) = (x cos(e) + ysin(e), —x sin(e) + y cos(e€), z|v)
= Rl(e, 2) |z) = |z cos(e) + ysin(e), —x sin(e) + y cos(e), 2)
= Rl(e,2) = R (e, 2)

So R is unitary.

4.2.2 Relationship with the Angular Momentum Operator

Now we use the fact the rotations are infinitesimal, use small angle approximations and Taylor
expand:

V' (z,y,2) = (@ +ye, —xe +y, 2)
~ (2, Y, 2) + yedph — wedy1)
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Now compare with the proposed form R(e,z) = I+ G:

(@I + Gly) = ¥(@,y,2) + (2|G|¥)

€ . o A
= G = ——(9D: — 2y)
As you will see later, this is related to the angular momentum operator:
1€ »
R =1-—L,
(6? Z) h

We can now apply a large number N = /e to reach any angle 6:
9 .\
R(6,z) = lim (I - ZLZ)
Which is of course a matrix exponential

_ 0L,

R(O,z) =e¢ " h

4.3 Time Translations and the Hamiltonian

By considering the Schrodinger equation
ihdy (1)) = H (1))
We can see that |¢(t)) can be created by action on [1(0)) by the following operator, like so:
_iHt
() = e” 7 [1(0))

And hence we define the time evolution operator:

~ iHt

Ut)=e¢ "n

As H is hermitian, U t(t) is simply given by

iHt

Uf(t) = e
And hence U(t) is unitary as U(t)UT(t) = I.

4.3.1 The Schrodinger and Heisenberg Pictures

There are two ways to consider the time evolution of an observable in quantum mechanics. The fist
is the familiar picture, where bras and kets are time dependent and operators are time independent:

(Os) = (¥ (1)|Os](t))

And the kets evolve as dictated by the Schrodinger equation. This is the Schrédinger picture.
However, we could also write the bra and ket in terms of the time evolution operator:

(Os) = (W (0)|UT (1) OsU ()]4(0))

In this case we could consider the bras and kets time independent and the object Utt)OsU(t) = Oy
as a time-dependent operator. This is the Heisenberg picture. Using the fact Og doesn’t depend on
time, we can derive the time evolution relationship of these operators too:

8,0 = (8%%)050 + UTOS(atU)
. i
Ut = ﬁI{UT
U = —%FI U
— 9,0y = %(HUTOSU O HD)
As U is a function of H only, it commutes with H and thus we can write
i

h

This is the Heisenberg equation of motion.

8,0y = —[H,0y]

29



4.4 Invariance

Consider a transformation 7. If a system is invariant under 7 then measuring the energy of a system
in state |t) should give the same result as that of a system in state 7 [¢)). So if |[¢)) is an eigenstate
of the Hamiltonian then 7 |¢) should also be, with the same eigenvalue E:

Hy) = E )
= 7H ) = E7 [¢)

And also
HF [¢) = E7|¢))

By subtracting the last two equations it can be seen that |7, H ] = 0. So for a system to be invariant
under a transformation, said transformation must commute with the Hamiltonian.

4.5 Worked Example: Reflection Operator

Question 2. Let ]5030 be the operator that reflects about a point xg. Show that
1. the transformed wavefunction V' satisfies ' (x) = ¥ (2z¢ — x)
2. Py |zo+x) = |zo — )
3. PpyiPy, = 220l — &
b PogpPuy = —p

Draw a number line and convince yourself that when a point x is reflected about xg it goes to 2zy—=.
The transformed wavefunction at the transformed point should equal the original wavefunction at
the original point, as we have seen already in this chapter: ¢'(2zg — ) = ¢¥(z) from which the
first part follows immediately. To show the second part holds is also simple: we already know
Pxo |z) = |229 — ), and the answer follows a simple replacement of x with zo — z. For the third
part, begin by inserting an identity after the expression:

PoiPy, — / Poi Py, |2) (2] da
= /Pxoi" 220 — x) (x| dz
Now |2z — z) is still a position eigenstate so the & operator acts on it as you would expect:
= /(on — )Py, |220 — 2) (2] dz
- / (220 — ) |x) (2] da
What could this operator be? Let’s make an ‘informed’ guess of 2x¢l — . Inserting an identity:
2wl — 3 = /(2xol — &) |z) (x| dx

= /(2950 —z)|z) (x| dx

So the expressions are equal, and we ‘guessed’ correctly. This isn’t a great argument, so maybe
send me an email if you come up with a better one. Anyway, for the last part we need to prove an
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intermediary result. Consider the following

<x\15x0|¢> = <fv|1//>

= (2zo — (1)
So clearly (z| ]5z0 = (2z9 — z|. Now let’s use the sandwiching method again:

<x‘pxof)pzo W]> = <2‘T0 - ‘T|ﬁpﬂco |¢>
0

= —’Lhm <2£U0 - x|P$0|z/)>
) dx

= —tham <~T|1/J>

= (2|ihd. )

Which clearly demonstrates the fourth part of the question.
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Chapter 5

Angular Momentum

5.1 Orbital Angular Momentum

Angular momentum is defined as L = r x p. We can use an analogous definition here, with compo-
nents 1, 2 and 3 corresponding to x,y, 2:

L; = €;1x2Dr

Now consider the commutator

By cyclically permuting the components we can derive the general relationship
[f/i, i/j] = ih&ijkik
Let L? = L2 + L2 + L2. It can be shown (tediously that [L2,L] = 0, i.e. L? commutes with all

components. Hence it is possible to find simultaneous eigenstates of L? and L.

5.1.1 Ladder Operators
We begin by defining the following operators:

Ly=1L,+iL,
It should be clear that I:l = ﬁ;. Some useful relationships for you to prove are

(L., Li]==+hls

[L? L] =0

>

Hence, consider the following. If |¢) is an eigenstate of L2 ie. L2 [y = A|):
L2, L] ) = L2La [9) — Lo L? |9) = 0
= ALz [¢) = L° Ly [9)

So L+ |¢) is also an eigenstate of L2 with the same eigenvalue. Now consider the second commutator
equation. Let |¢) satisfy L, [¢) = p|¢):
(L, Li) ) = LoLy |0) — Ly L. [ib) = £hLly [¢)
L.Ly i) = pLy |¢) & hLy |0) = (n h) L |)

1See Griffiths.
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So if |¢) is an eigenstate of L. with eigenvalue p then L |¢) is also an eigenstate with eigenvalue
w=xh.

Notice that we can therefore use these ladder operators to increase the eigenvalue of ﬁz, but at some
point it will be possible to reach a state with z-component greater than the total. Therefore, we must
reach a highest rung of the ladder. Similarly, we can’t go down forever as we would eventually reach
a value with a greater magnitude than the total (it would of course be negative). It is not required
for this course to derive the eigenvalues of ﬁz, ﬁ27 but the derivation can be found in Griffiths. I
will quote what you need to know:

1. Simultaneous eigenstates of L., L? can be written as |l, m) which satisfy the following eigen-
value equations:

o L.|l,m)=hm|l,m)
o L2|I,m) =Rl +1)|l,m)

2. m goes from —I to [ in integer steps.

3. [ may be an integer or half-integer, i.e. 0, 0.5, 1, etc. This will be revisited later, as it turns
out we can exclude the half integers.

As we did with the harmonic oscillator, we can investigate how an eigenstate changes when it is
operated on by L:

Lill,m)=csl|l,m=+1)

|C:t‘2 = <l7m|i’:Ff’i|l7m>

Consider f/jpﬁi:

LeLy = (Ly Fily)(Ly il
L2+ L2 +i[L,, L]
L? —I?Fhl,

Subbing this in we get
lex|? = (I, m|L? — L? 7 hL.|l,m)
=R+ 1) — B?m? F h*m
=cy=h/I(l+1)—m(m=*1)

5.1.2 Matrix Representation

We can easily work out the matrices that represent the angular momentum operators. We will
consider the [ = 1 case. By making the association

1
I,1= {0
0

0

11,0)= |1
0

0
i,-1)= [0
1
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We can consider the eigenvalue equations of L, to find its form:

h
w
—oo oo coor
Il
o

X 0
L, =—h|0
1
Hence we have
. 1 0 0
L.=hm|0 0 O
0 0 -1

Now consider the eigenvalue equations of I:i:

1
L+ 0 :0
0
A 1
Lyl1]=m/2]0
0 0
A 0
Lylol=m/2]1
1 0
(1 0
L o] =mv2]|1
0 0
A 0
L (1]l=m2]0
0 1
A
L_lo] =0
1
Which yields
A 010
Ly=m/20 0 1
0 0 0
) 00 0
L.=m/2(1 0 0
01 0

Now we use L, = (L + L_)/2, L, = (Ly — L_)/2i to obtain

01 0
- h
L,=—1|1 0 1
ﬁOIO
PO
y\/io 0
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5.1.3 Angular Momentum in Position Basis

We begin from the equation I:Z- = €k TPk, and using our position basis representations for & and p:

Li = —’ihGijkl‘j({);Ek

If you would like, you can work through a lot of algebra to convert these expressions into spherical
co-ordinates. As I am currently typing this while on holiday in Greece, and would therefore like to
minimise the amount of misery I have to go through to create these notes, I will simply quote the
results here.

L, = —ih (—sin ¢dy — cot 0 cos pdy)
L, = —ih(cos ¢pdy — cot 6 sin ¢y )
L, = —ihd,
~ (99 (sin 989) 835
L2 — _ 2

h ( sin 0 * sin? @

5.1.4 Eigenfunctions
In the position basis, the simultaneous eigenfunctions of L. and L2 satisfy
L2y = B2+ 1)y
L.Y™ = hmY]"
You are required to know the form of these eigenfunctions, known as spherical harmonics, for [ = 0, 1:

Yoo ox 1

Yip o< cosf

Vit o Fet?sing

You can work out the normalisation by integrating over the spherical coordinates.

5.1.5 Integer or Half-Integer Eigenvalues

I previously stated m goes from —I to [ in integer steps, which corresponds to successive L. eigen-
values differing by . However, notice that if it takes N integer steps to get from —I to [, we have
l— (=) =N =1=N/2. As N is an integer, then [ ( and thus m) may be an integer or half-integer.
However, m being a half integer is actually forbidden in this case, which we can see by considering
the situation physically. Consider the eigenfunction equation for the spherical harmonics:

L.Y™ = hmY™
And now use the position representation of L.:
—ih0yY;™ = hmY;"
=Y = Ae'™m?

where A is some constant that may be a function of 6. Notice that if we rotate ¢ through 27, we
expect Y, to remain the same:

e?‘n’zm _ 60 =1

Which implies m must be an integer. As the case [ = m is allowed, this also restricts [ to being an
integer. We shall see that in the spin case no such constraint exists.
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5.2 Spin

It can be shown through experiment that particles have intrinsic angular momentum, known as
spin. Intrinsic, in this context, means that spin is not a function of other properties, like how orbital
angular momentum is a function of r and p, and therefore of 7,8, ¢. Let’s see what we can find out
about this quantity. We introduce the operators S, and 52 in analogy to L. and L?. The algebra
is the same:

[ .S il = zheiij’k
S |s,m) = hm|s,m)
52 |s,m) = h%s(s + 1) |s,m)
Sy |s,m) =hy/s(s+1) —m(m=E1)|s,m+1)

Again, m goes from —s to s in integer steps. However, as spin is intrinsic, we cannot find eigenfunc-
tions in terms of r,6, ¢, and therefore can’t impose the same constraint as we did before, namely
that m must only be an integer; in this case s may be an integer or half integer (as we saw before
with 7). Tt turns out that the value of s is constant for each type of particle. Electrons are the
simplest case, and they have s = 1/2.

5.2.1 Spin 1/2

As s =1/2 and m goes from —s to s in integer steps, we have m = —1/2 and m = 1/2 as the two
possible eigenvalues of S,. We denote the corresponding eigenstates as

M= 53)

9=3-3)

Which we refer to as spin up and down respectively. We would like to find the matrix representation

of the spin operators. Let’s begin by making the association (é) — |1) and (?) — |J). We know

the action of Si on these states:
5 (1
5 (1) =0
~ (0 1
(1) =1 (o)

4 (0
5 (0) =0
Which lets us construct S’i:
A 0 1
Sy =h <0 0)
A 0 0
-
Now use the fact that S, = (S +S_)/2 and S, = (S — S_)/2i:
A 0 1
soma(0 1)
5 . 0 -1
Sy =ih/2 (1 0 )
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Also from the eigenvalue equations we know the forms of S, and 52
- 1 0
sman( )

82 o032 1 0
s o} 0)

Now suppose we would like to measure the spin along the z (say) direction. To investigate this,
we need to find the eigenvalues and states of the corresponding observable, in this case S,. You
can check that the eigenvectors are %(H) + |))) with eigenvalues £7/2. Hence, measuring the spin
component in the z direction throws the system into a superposition state where we no longer have
any information about its spin in the z direction: it could be up or down, with equal likelihood.

5.3 Particles in Electric and Magnetic Fields I

Considering only the particle’s spin as contributing to the magnetic moment, we will assume the
magnetic moment is proportional to the spin. This is indeed the case for a classical particle, so we
will take the liberty to write

p=nS
5.3.1 Larmor Precession

From your EM course you should know that the potential energy of a magnetic dipole in a B-field
is U = —p - B. We can use this as our Hamiltonian, assuming the particle to be at rest:

H=-45-B
Without loss of generality take the field to be in the z direction. Hence:

- . 4Bh(1 0
H==B5 =-7 (0 —1)

Now let’s say the system is in a general state |1(t)) = a(¢) [1) +b(¢) |). We can use the Schrédinger
equation to get:

o (3) =75 (%)

From which we obtain

aoei'th/Q
5(0) = (o e

Notice that the normalisation of |¢(t)) gives the constraint a + b3 = 1 so without loss of generality
we can let ag = sin(a/2), by = cos(a/2) for some . We are now in a position to find quantities of

interest (S,) and (S,). Working through the algebra yields

>

(S) = gsin(a)cos(VBt)

(Sy) = —g sin(a) sin(yBt)
(8.) = gcos(oz)

In some sense then, the spin precesses around the z axis at an angle « to it.
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5.3.2 Stern-Gerlach Apparatus

Consider that if the potential is U = —p- B and F = —VU, then there will be a force on the particle
equal to F = V(7S - B). As you can see, in the case of a uniform field we have zero force. However,
in the case of an inhomogeneous field, we might have a force - let’s explore the simplest case; a
strong field in the z direction with a small linear inhomogeneity:

B = (By + az)k
This had better be a physically possible field, so let’s check if it works with Maxwell’s equations:

V-B=0
=sa=0
= B = Bok

So this gives us a homogeneous field in the z direction: exactly what we didn’t want. To fix this we
will have to also add a small inhomogeneity in the x direction:

B = —axi+ (By + az)k
And you can check this satisfies the no magnetic monopoles law. In this case then the force is

F = ya(—5,i+ S.k)
Over time Larmor precession ensures that (S’x> averages to zero, leaving only a force in the z
direction of magnitude ya(S,). Hence, a particle in the state [1) will experience a force in the

opposite direction to one in |]). We can use the SGA as a spin filter, and to measure components
of spin in a given direction.

5.3.3 Stern-Gerlach Filters at an Angle

If we would like to measure spin along some arbitrary axis n = (0,sin§, cos #), then we simply have
to find the eigenstates of n - S, i.e. the component of the spin along the axis. In the spin 1/2 case,
we have

n.S— E (.CO.SQ —zsm@)

2 \isinf —cos@

And so the eigenvalues are £7/2 as we would expect, and the eigenvectors are
160 = (o)) = con(@/2) 1) + isin(o2) 1)
126) = (03 ) = isin(o2) 1)+ cos(6/2) 14

Where |1, 6) and ||, ) correspond to the eigenvalues of £h/2 respectively. We can see that after the
particle goes through the filter, the probability of measuring i/2 along the z direction, e.g. by way
of a z-oriented SGA after the angled one, would be

P(h/2 in z direction) = | (1| 1,6) |* = cos®(6/2)

5.4 Worked Example: Angular Wavefunction

Question 3. The angular part of a system’s wavefunction is
(0, 6|1)) o V2cos O + sinfe'? — sin he'?
What are the possible results of measurement of L. and f/Q, and their probabilities?

Rewriting in terms of the spherical harmonics we have

L? has eigenvalue h2l(l ) and this wavefunction has a single [ value, namely 1, so the possible
outcome of measuring L% is 2h2 with probability 1. As the wavefunction weights the different values
of m equally, and L, has eigenvalues im, the possible outcomes are +h,0 with equal probability
1/3.

38



Chapter 6

The Hydrogen Atom

We would like to know two things:
1. wavefunction of the electron, so we can predict where it may or may not be
2. allowed energies (eigenvalues).

What follows is the ‘best{] derivation I settled on, which you will need to memorise for the exam.
It is mostly lifted from Griffiths. We consider not just hydrogen, but hydrogen-like ions, i.e. nuclei
of nuclear charge Z with a single electron.

6.1 Derivation

We begin with the Hamiltonian. As usual, we have kinetic + potential energy, but we have to
consider both the energy of the nucleus and the electron:

~ 2
= Pn

. p2 Ze?
2m, = 2me  4meglx, — X

We would like to rewrite this Hamiltonian in terms of centre of mass (CM) coordinates; these are
the position of the CM (x¢as) and the radial separation r = x,, — X.. After some manipulation
which T am quite confident you will not be required to reproduce, and switching to the position
representation, we arrive at

[7#2 W, Ze?

Tonr VoM T g Ve 47“04 Y= (Ecu + En )Y

Where p is the reduced mass, M is the total mass (m,, +me), Ecas is the energy associated with CM
motion and F, is the energy associated with relative motion. Now as the nucleus is heavy relative
to the electron, lets ignore all the CM motion in this equation and focus on the relative motion:

[ nr_,  Ze?

5. ]w:Ew

- 4megr
Where I have relabeled E,. as E. Now lets use the first of many convenient ansatzes: we will write
¥ in terms of some radial wavefunction R(r) and the spherical harmonics, which as you know are
functions of # and ¢. This is a simple separation of variables.

[ h? o2 Ze?

5V ] RY;" = ERY}"

dmegr

We can also rewrite the Laplace operator in the following form:

L2
h2T2

1By ‘best’ I mean the one which requires the least memorisation while still being somewhat rigorous.

[e]

Vio = L02(ro) -
r
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Where the o indicates where the function the operator is applied to should go. We now have
h2 L2(RY™)  Ze?

2 (rRY™ —
2ur P RY) + 2ur? dmeor

RY;™ = ERY;"

Recall the eigenfunctions of L? are the spherical harmonics:

L2Y™ = AL+ 1)Y™

So we have
R2Yym d@2(rR)  R2(l+ 1)RY;™  Ze?
— — RY" = ERY"
2ur  dr? 212 dregr !

Let’s cancel the spherical harmonics. Also, introduce a change of variables u = rR:
W d*u RA(l+1Du  Zeu

24 dr? 2ur?  Ameor

= Fu

Now we use another substitution, in which we write the energy as related to some wavenumber in
the usual way, although negative as we expect the energies to be negative (energy needs to be put
in to ionise the atom).
h2k?
2p
Leaving us with

d>u I+ Du  pZeu

i — k2

dr? r2 + 2megh2r u
Now two further substitutions. One to introduce a length scale (p = kr) and one to clean up the
mess of constants (po = uZe?/2negh*k). Notice that d?/dr? = k*d?/dp?:

d? I(1+1

Fu_ o D
dp p p

Let us investigate small and large-p behaviour. At large p we have

"
u U

= u= Ae ” + Be’
And we have B = 0 as we want the wavefunction to die away at large p. Now for small p:
o A ul(lp;r 1)
= u=CpHl 4 Dp!

And D = 0 as the wavefunciton needs to not diverge for small p. Hence we propose u has the form
u = e Pp'Tlu(p). After tedious algebra, you will find

o' = e—ppl+l [U (l(l "’; 1) _ 2(l + 1) + 1) + ' (H_l _ 1> —|—’UH]
p p p

So let’s sub this into our differential equation for u. We will get

pv" +20"(1+1—p)+v(po—2(+1)=0

Now we need to find v. Let’s use an infinite series ansatz:

d?v = - N -
i > 3G =Dep 2= 56+ Dejrap !
_ par
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Where the last sum was re-indexed. Hence

oo

DG+ Dejpap’ +20+ 1= p)jep’ " +¢j(po — 21+ 1)p'] =0

§=0
As the series equals 0, the like powers of p must also sum to zero. This leads to
0=70 +Dejr1 + 20+ 1)(J + 1)¢j1 — 2jc; + ¢j(po — 2(1+ 1))

2 +2(14+1) — po
+1E+2(+1))

= Cj+1 =€

Now notice that for large j, the coefficients approach ¢;y1/c; ~ 2/j. This is the same ratio between
coefficients as in the following:

> (9,)i
Z(p‘) :62p

PR

Which is an exponential increase, not a decrease: so as we add more terms in the series, v gets closer
to a diverging function of p. This is not what we want; the series must terminate at some j = N
such that ¢y = 0 but ¢y_1 # 0. Note that ¢y can’t be 0 as then there would be no series at all. We
may rewrite the coefficient relationship like so:

2(j +1) — po

Cj =Cj1—
PTG+ 2+ 1)

Now notice to also satisfy our termination criteria we have

Po

N+l=—

+ 2
Let’s define N + 1 = n. Because N is an integer from 1 to co and [ is an integer from 0 to oo, n is
an integer from 1 to co. As N = n —1 is definitely an integer > 0 as discussed previously, and [ > 0,

we have that n > [, which implies [ goes from 0 to n — 1. Anyway:

puZe?
M = py = 25
n=rpo 2megh?k
uZze?
=>k=——+—
4dmegh’n

1| u [ Ze? 2
=>F,=—— |=—
" n? [2h2 <47T60>
These are our energy eigenvalues; the allowed energies of hydrogen-like ions. We also have a length

scale, defined by 1/k. We usually use the n = 1 version of this, which is called the Bohr radius ap
for Z =1 and pu = me, or az in general. This is given by

dmegh? 1
a = = —_—
Z nZe? nk
dmegh?
ap = 3
mee

Now we have our eigenvalues, let’s move onto the wavefunction. We can see that v, and therefore u,
and therefore R, depend on n and I. For n =1, [l = 0 and we have a single wavefunction to consider,
R, = Rig. I could find the others as well but it’s really tedious and you probably won’t be asked
to do this, it’s better to just memorise the first few that the syllabus mentions. Anyway, N =n =1
so the series of v is only a constant, which we forget about as we will normalise the whole thing
anyway, leaving u o pe ? or Rig o< e~"/%2. As m = 0 and Yy is a constant the first wavefunction
is still proportional to this exponential, and the constant can be worked out through normalisation.
You can find the rest of the wavefunctions in Griffiths.
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6.2 Ground State Wavefunction

For future reference, the normalised ground state wavefunction of a hydrogenic ion with nuclear
charge 7 is

1

Vmad

e_T/az

1/)100 =

6.3 Degeneracy

A quick note on degeneracy: for each level, there may be n different values of I (I =0 to n — 1) that
correspond to the same energy. Each [ has a further 21 + 1 (- to ) allowed m values, leading to a
total of

n—1

do@i+1)=n?

=0

unique states that correspond to the same energy F,.
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Chapter 7

Composite Systems

7.1 Algebra

7.1.1 Notation

Suppose we have two particles, labelled 1 and 2. These particles may be in one of two states, also
labelled 1 or 2. Particle 1’s states, namely |1,1),|1,2) live in a separate (vector) space of states from
[2,1),]2,2), particle 2’s states: it doesn’t make sense for a single particle to be in a superposition
of both particle one and two states. If our system is contains the two particles, say with 1 in |1,1)
and 2 in |2,1), we write the state of the system as a whole as |1,1) |2,1) or |1,1) ® |2,1). Formally,
this object is in a tensor product space of the two independent spaces, but don’t worry about this
too much.

7.1.2 Scalar Products

The main idea with composite systems is that parts from one space only combine with parts of that
same space. The scalar product works like this:

((1,m[(2,n))(|1,p) 2,9)) = (1,m[1, p) (2,n[2,q)

7.1.3 Operators

Operators also only act on the ket from the space they are in:

7.1.4 Integrals and the Position Representation

Integrals are evaluated over all position spaces. For example, consider the integral associated with
the identity operator in the position representation:

I://‘$1,$2> <I1,$2‘d&?1dl‘2

7.2 Composite Hamiltonian and Schrodiger Equation

The Hamiltonian is (predictably) the kinetic and potential terms for each particle, plus a possible
interaction potential:
) .2
= P: P2

= g+ g Va1 + Va(Ra) + Vi (1, %)

This leads to a TDSE of the form
K2 9 K2

Vi - jvz + Vi(x2) + Va(x2) + Vine(x1,%2) | (%1, X2, 1)

ihopp(x1, X2, t) = "o V1 om
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7.3 Independent Particles

An important case is when V;,; = 0 and therefore H=H 1+ H o. In this case, the wavefunction can
be separated into independent components: ¥ (x1,X2) = ¢1(X1)p2(x2)

7.4 Product States and Entanglement

7.4.1 Product States

Consider a state [¥) = c11c21 |1,1)]2,1) + cr1e22 |1,1) ]2, 2) + c12¢21 [1,2) |2,1) + c12¢02 |1, 2) |2, 2).
This is known as a product state, as it may be written as a (tensor) product of states from the two
different parts: |¢)) = (c11|1,1) + 12 |1, 2))(c1 2, 1) + co2 |2, 2)). Notice that if we measure the state
of particle 1, there will be no effect on the state of particle 2. We can see this through a simple
application of Bayes’ theorem. Let’s say we would like to measure the probability that particle 2
(p2) is in state 1 given that we have already measured particle 1 (pl) as being in state 2. Bayes’
theorem tell us

P(p2 in state 1 given pl in state 2) P(pl in state 2) = P(pl in state 2 AND p2 in state 1)
We know the RHS = |ciac21|? and also
P(pl in state 2) = P(pl in state 2 AND p2 in state 1) + P(pl in state 2 AND p2 in state 2)
= |012021|2 + |012022|2
SO we can write

_ |c1ca1[? _ 1
|012021|2 + |612622‘2 1+ \022\2
c21]

P(p2 in state 1 given pl in state 2)

Notice the expression after the last equality is independent of particle 1; we have measured particle
1’s state, and this had no effect on the state of particle 2. This property is true of all product states.

7.5 Entangled States

Consider the state [¢)) = c11¢22|1,1)|2,2) + c12¢21|1,2) |2,1). This state cannot be factorised into
a product of two states of different particles. Notice if we measure particle 1 as being in state 2
first, the superposition collapses to [¢)) = |1,2)|2,1) as there is no chance subsequent measurements
would show it to be in state lﬂ Hence if we were to measure particle 2, now, we would always find
it in state 1. Contrast this with the situation where particle 1 is measured as being in state 1 first:
the superposition collapses to ) = |1,1) |2,2) and we will now always measure particle 2 as being
in state 2. These kinds of states are called entangled states, and measurements on one part of the
system will be correlated with measurements on other parts.

7.6 Combining Two Spin 1/2 Systems

Recall that the state of a single system with spin may be written as |s,m). We can then write

the state of a two component system as |s1m;) |sams) or for compactness |s3mysams). There will
be an S, operator for each space, which we denote 5*9), S’§2). Therefore, the operator representing
total spin component in the z direction will be S, = Sgl) + S£2). Lets apply this to our general two

particle spin state:

S, [symisama) = (S [s1ma)) ® [sama) + [s1m1) @ (S |samo))

(
= h(mq + mg) |51m152m2>

So we expect m to simply add.

1Remember, this is a postulate.
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7.6.1 Singlet and Triplet States

Let’s look at the specific case of spin 1/2. Our states are

5333) =M (m=1)
5352 ) =M (m=0)
S5 33) =M =0
5353 ) =l m=-

We would expect that the combined m goes from —s to s (where s is the s-number for the composite
system) in integer steps, but clearly something isn’t quite right; there are two states with m = 0
where there should only be one. Recall that using the raising operator on the highest state will give
0, and likewise the lowering operator gives 0 when acting on the lowest state. We can define the
relevant operators for our composite system:

§e= 50 1 59
Applying these to |11) and |}J) shows that these are indeed the highest and lowest states:

S =GP ) @+ 1) e S ) =0
N—— N——

=0 =0
S =D U e+ e @) =0
=0 ='0

But notice what happens if we apply the lowering operator on |TT>B

St =BD ) e )+ 1) e @)
= A(41) + 1)

You can check by applying S, to this state that you get m = 0, implying this is our correct m =0
state. You can also check that if you use the lowering operator on this state again you will arrive
at |JJ) (up to a factor which is irrelevant due to normalisation). We have states that go from -1
to 1 in integer steps: these states therefore correspond to s = 1 and our job is done. However, we
originally started with four basis states and have reduced these down to three. What happened to
the fourth state? It turns out that there is also an s = 0 state, where the spins ‘cancel out’. This
state is %(Hi} — [41)), and you can check that applying the raising and lowering operators yields
0. This is indeed the only state, and as it goes from 0 to 0, s is indeed 0. So we have the following
correctly normalised states:

)

Triplet state (s = 1) %(H@ + 1)
)

Singlet state (s = 0) { J5 (1) — [41))

2You could also get the same result by applying the raising operator on ||]).

45



Part 11

Further Quantum Mechanics
Course

46



Chapter 8

Time-Independent Perturbation
Theory

8.1 Non-Degenerate Perturbation Theory

8.1.1 First Order
Suppose we have a Hamiltonian H that has been perturbed slightly from a value H°:
H=H+)\H

Where ) is a small number and §H is the correction. Suppose further that we know the eigenvalues
(let them be EQ) and orthogonal eigenstates (let them be |n)) that satisfy the original TISE in HY:

H |n°) = Ep [n°)

And finally let us assume we can expand the eigenstates and eigenvalues of our corrected Hamiltonian
H as a series in A of smaller and smaller corrections to these original eigenstates:

In) = [n°) + X |nt) + A% |n?) + ..

E,=E)+ \E} + NE2 + ...
Then the situation satisfies

(HO+ XGH)(In°) + X [0ty + 22 [n?) +...) = (BS 4+ AEL + N2E2 +.)(In°) + A [n!) + 22 |n?) +..)

Let’s expand this to order A%

HO|n%) + MSH [n%) + HO [n')) + N(H° [n®) + 6H |n')) = E;) [n°) + MEy, [n°) + E}) [n'))

+ A (Ep [n®) + By [n') + E7 [n°))

Now we can compare the order \ terms:

§H |n°) + H° |nt) = E} |n°) + E° |nt)
Let’s bra through with (n°:

(n®[§H[n°) + (n°| H n') = Ej, + B} (n°[n')
Which leaves us with an expression for the 1st order correction to the energy:

E} = (n°|6H|n°)

Let’s now find the 1st order correction to the kets. Let’s bra through the order A expression with
(m°|,m # n instead. Remember due to orthogonality (m°n®) = 0:

(mOlSH %) + (m°| HO |n') = EY (m® ')
——

EQ (m?O|

m
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Rearranging, the components of our first order correction satisfy

(m°|6 H|n®)
= ) = T g
0 70,0
1\ Z (m°|6H[n%) 4

Notice this is not valid in the degenerate case, i.e. ES = E%. We will revisit this later. It should
be noted that the normalisation condition (n|n) = 1 causes |n*) ,k > 0 to have no |n°) component.
In other words, (n°|n*) = 0. Try and prove this yourself; you can find it in a footnote in Griffiths if
you can’t.

8.1.2 Second Order

Let us now compare order A2 terms from our previous expansion:
HO [n®) + 6H |n') = Ef, [n®) + B}, |n') + E}, [n”)

Let’s bra though with (n°]:

(n°| H° |n?) + (n°|6H|n') = E2
N——

n

=E3 (n°]

Where (n°|n*) = 0,k > 0 was used - use it again to eliminate the first term on the LHS. Hence,
subbing in our previous result for [n!):

-y [ (m?[6H]|n") [ °|5H|n ) °
EO

m#n

8.2 Degenerate Perturbation Theory

Consider an energy E° common to two states:
H°|a%) = E°|a®)
HO[p°) = E° [p°)

Recall that any linear combination of these eigenstates is itself an eigenstate: let’s construct one.

2%) = ala®) + 5 |b°)

H°|2%) = E°|2°)

This means we can use |z) instead of |n) in our 1st order expansion:
SH |2°) + A0|2) = BV |20) + O |21)

And bra through with |a®):
(al6H|2°) + (a°| HO|2") = ' (a°[2%) +E° (a°|2")

The 2nd term on the LHS cancels the 2nd term on the RHS leaving
aE' = a (a®|6H|a®) +5 (a®|6 H|b°)

§Haq §Hgy,

If we bra through with |0°) instead we get

BE' = a (1°|6Ha®) +5 (b°|5H[V")

6I:Iba 5ﬁbb
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We can arrange these equations into an eigenvalue equation:

(Miraa 5ﬁab> <a) _ g (a)
§Hy, 6Hy) \B) B
—fﬁ

0H4

Here §H, is a small part of the larger §H matrix corresponding to the degenerate region of vectors
in its space. The crucial idea here is that perturbation lifts the degeneracy. Let’s imagine
that the perturbation is not active, and therefore there are two states with the same energy. These
states may be chosen at will from the space of linear combinations of the relevant eigenstates, as any
state within that space is also an eigenstate. Then, let’s apply the perturbation fully: the energy
splits into positively and negatively corrected energies, and the states we chose from the space also
receive a correction. Now, let’s reverse the process, and start switching off the perturbation. The
correction to the states reduces until they become two uncorrected states that live in the space again.
Are these two states the ones we chose? No - they can’t be, because the perturbation will apply a
correction that turns them all into the same corrected state, no matter which ones we chose initially.
This means no information about the states we chose from the space originally is carried over to
the perturbed states - so they can’t ‘remember’ what they were originally when the perturbation
is removed! Therefore, they must settle into two ‘special’ states, which of course still live in the
space. These are called ‘good’ states, and are given by the eigenvectors of 5f[d, and the positive and
negative 1st order corrections to the energy are the eigenvalues.

8.3 Worked Example: Hamiltonian Matrix

A1 +eB; €By

Question 4. H = By A,

Al 7& A2 and Al = AQ.

). Find the allowed energies to 1st order in € in the case

We begin by identifying H° and §H:

- A 0
o_ (41
=y 1)

o €B1 GBQ
0H = <6B2 0 )

Let’s start with the non-degenerate case. Our unperturbed states are |1°) = (1,0),]2°) = (0,1)
with unperturbed energies EY = A;, E§ = A, respectively. To find the correction we use 1st order
perturbation theory:

El = (1°]6H[1°)

~aol B) ()=

E} = (2°|6 H|2°)

“on® 2 ()

So the allowed energies to ﬁrstAorder are 1 = A + eABl, Ey = Ay. Let’s move on to the degenerate
case. In this case the whole H? is degenerate so §H; will be the whole §H matrix. To find the
energy corrections we just need to find the eigenvalues. These come out as being

Ay = %(Bl + /B2 +4By)

And the energies are of course

Er=A+ )Mt
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8.4 Worked Example: QHO Perturbation I

Question 5. The harmonic oscillator of frequency w is perturbed by 6H = ei?. Forl= i/ 2mw:

1. What is the exact change in the ground-state energy? Expand this change in powers of € up to
order €2.

2. Show that the 1st order energy change agrees with the exact result.
3. Show that the first order change to the ground state is |b) = —(el? //2hw) [2°).

4. Show that second order perturbation theory yields a change Ef = —e*h/4m>w? in agreement
with the exact result.
Let’s begin by writing down the Hamiltonian.

R p2 1
H= "+ Zmuw?3? + e3>
2m 2

And notice that this is still a QHO Hamiltonian:

9
2 p 1 2.2
H=—4+-m

om T3

0 =+/w?+2/m
1

Hence the ground state energy is Eg = 5h{2. Let’s binomially expand:
1 2y1/2
Ey = Ehw(l + 2¢/mw*)
1
ghw(l +¢/mw? — €2 /2m3w?t)
1 he he?
2 2mw  4m2w3

Q

1 9 et

Now let’s find the 1st order energy change. We need to evaluate
E} = (0°]e2%]0°)

As these states are harmonic oscillator states, we should convert 22 into a form involving raising
and lowering operators. You can check that

z=1lay +a_)
= 3% =1%(a3 +a> + aya_ +a_ay)

So

E} = el? (0°6% + a2 + %m%
= el (0°] (V2]2%) + [0°))

= %
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In agreement with the 1st order result.
Now let’s find the change in the ground state:

i hi 7°e2?|0°) Ith

=1 2 (jhw + 152

el SN (%13 + a2 + 30 5°)
hwjzl j
el> o~ (701 (v2]2°) +10°) 5°)
hw J

j=1

(el /v/2hw) [2°)

Now finally, the second order energy change:

(5%led?]0°) [?
EO - Z hw .

% (s )
Ly
hw 2
€214
T hw

In agreement with the exact result.

8.5 Worked Example: QHO Perturbation 11

Question 6. The harmonic oscillator of frequency w is perturbed by 6H = ed*. Forl= i/ 2mw,
show that the first order energy correction of the nth state is

E! = 3el*(2n® +2n + 1)

From the previous question we have 32 = [? (&i + a2 + %) Consider E! = (n°|e2*|n°). Recall &
is hermitian; we can therefore split the £* into two #2 and act on the bra with one of them. As the
expression is symmetric we can write

EL = n°)

2H

= ')/t D+ 2) [(n+2)°) + v/aln— D) |(n—2)°) +2(n +1/2) o) [
=el'(n+1)(n+2)+n(n—1)+ (2n+1)%)
=3el*(2n% + 2n + 1)

2

=t
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Chapter 9

Selection Rules

This brief chapter will cover an important trick for simplifying integrals you’ll have to do in this
part of the course. I apologise for the poor quality of this part as I never really understood what
this was all about - you’ll have to find somewhere else to learn this from if you’re in the same boat.
Anyway, here’s my limited knowledge of selection rules.

9.1 Matrix Elements

9.1.1 Converting Bra-kets to Integrals

Let’s begin by considering the quantity (n'l'm/|f(x)|nlm). We can resolve the identity over the
spherical co-ordinates:

= / n''m/|r,0,¢) (r,0, | f(X)|nlm) drdddo
Recall that (z| V(%) |¢) = (x| V(x) |¢). This allows us to move the function out of the ket sandwich:
_ / W F(r,0, ) (r, 0, lnim) drdods
_ / W (1,60, 6)bdrdbdg
9.1.2 Z-Direction
Lets take f(x) = 2. This yields the integral
/ Ry (Vi) (r® sin 0 cos 0) Ry Y™ drd0de

We are interested in when this integral is zero. This will never happen due to the radial integral, so
we can safely ignore it. You can check Prof. Parameswaran’s notes to see a summary of how to use
parity to get the rule that [ changes by at most one and never zero. Also, by considering the form of
the spherical harmonics (there’s a useful table on Wikipedia) you can see that the ¢ integral takes
the form

27
/ e*i(mf*miwdqg
0

Which is non-zero only if my = m;

9.2 Angular Momentum
It should be memorised that photons have [, = 1 and m,; = 1. Hence if a photon travelling

along the z axis is absorbed, the m value of the atom must change by at most 1, and there is no
change if the photon is absorbed after travelling along any direction in the x — y plane. Also, as [
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corresponds to the maximum possible value of angular momentum in the z-direction, it is possible
(by considering a photon travelling along the z-axis) to see that this number in the composite system
can change by at most +,, depending in whether the photon’s angular momentum axis is aligned
or anti-aligned with the atom’s. However if the photon travels along some other axis, the [ value
could change by less than l,, as the component aligned with the atom’s angular momentum axis
could cause partial cancellation. Therefore the final [ value for the atom that absorbed the photon
satisfies |l — 1] < ly <14 1. In this case a change in [ of zero is allowed, but it is disallowed by
considering matrix elements so is not relevant here.

9.3 Worked Example: Matrix Elements

Question 7. With |nlm) a stationary state of Hydrogen, which of these are non-zero?

1. (100]z|200
1002|210
100]z|211

1002|300

100|2(320
100|[200

S S N T

( )
( )
( )
( )
(100|2|310)
( )
( )
(100||210)
( )

9. (100z|211

Note z = rcosf,z = rsind cos ¢.

1. o< [y cosBsinfdf = 0

2. 40

3. o [, cosfsinfdf =0

4. oc [ cosfsinfdf =0

5. 40

6. o [ (3sinf cos® 6 — sinf cosf)df = 0
7. x fo% cos pdop = 0

8. x fo% cos pdp = 0

9. £0

53



Chapter 10

Particles in Electric and Magnetic
Fields 11

10.1 Minimal Coupling

The Hamiltonian for a particle of charge q in a magnetic vector potential A and electric potential
¢ is

- 1

e - 2
H—Qm(p qA)” +qd

10.1.1 Fields and Gauge Invariance
Recall from EM the forms of the electric and magnetic fields:

B=VxA
E=-V¢—-0A

A gauge transformation is one that satisfies

A—A"=A+VA
6= ¢ =6 — A

For a scalar field A. You can check by substitution that such a transformation leaves E and B un-
changed. If we transform the potentials, and therefore H, in this way, and simultaneously transform
the wavefunction as

U0 =My

Then the TDSE is still satisfied: iho; ¥’ = H'W’. This phase factor disappears when calculating
probabilities so different choices of gauge correspond to the same physical state. We can also recover
the Lorentz force equation from this Hamiltonian. You can check in the lecture notes that one can
arrive at the following expression by employing Ehrenfest’s theorem:

d<v>:q<E+va—va>

L 2

10.2 Aharonov-Bohm Effect

Consider the following situation: we send electrons through two slits, then they pass around a
solenoid in the middle. In the ideal case the B field is 0 outside the solenoid; the A field, however,
is not.
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e
Double slit Solenoid Screen

Figure 10.1: Setup of the experiment described by Aharonov and Bohm.

10.2.1 Calculation of the Vector Potential

Let’s use some results from EM. First:

B=VxA

:>jIéA~d1:<I>
C

Where C' is the circular path marked by the outside of the solenoid, in the direction of 6. Due to
symmetry A does not vary over C, so the integral can be evaluated:

2TRA = @
0
A= —
2R

Finally, in the region outside the solenoid we want B = 0 so A is curl-free, and thus can be written
as the gradient of a potential, which without loss of generality we may write as A = Vgg. Notice

that this implies an integral form for g, namelyﬂ

o =1[" ax)-ar
Tref

10.2.2 TDSE Under a Change of Variables

Consider the ansatz

U=y
It turns out this ansatz simplifies the TDSE. After lots of algebra and vector identities, you can
show the TDSE with ¥ becomes

h2
—2—v2\p’ = (hd, V'’
m

Which implies that we can treat the situation as if it were a free particle by considering ¥’, then
tack on the e'9 at the end to get the actual wavefunction.

1This is of course similar to the integral form of the electric potential.
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10.2.3 Phase Differences

Considering the integral form of g, we have along the top path dr’ = fRdHé, and hence evaluating
the integral we get

q®
Gtop = — %

For the bottom path dr’ = Rd@é, so we get

q®
Gbottom = %

and hence there is an extra constant phase difference of % added to the phase difference from the
two-slit interference, which shifts the interference pattern by a constant amount.

10.3 Uniform Magnetic Field: Laundau Levels

Remember we are free to choose any gauge we like; lets choose A = (0, Bz, 0) which you can verify
produces a uniform field in the z-direction. Let’s assume the particle has no motion out of the x —y
plane. When thinking about the classical analogue, the particle would be doing circular motion in
the plane instead of spiralling out of it. Anyway, the Hamiltonian becomes

1

H= %(—mawi — ihd,j — qBxj)?
1
= 5.~ ((ih0,)* + (ihd, + qBx)*)

Now lets use the ansatz 1 (x,y) = e*¥¢(x).

) 1 ) )
Ee™p(z) = %(—fﬂa’%” + ¢(ihdy, + qBx)e'*¥ (~hk + ¢Bx))

1 , . ,
= (=% + p(—hkeV + qBxe™)(—hk + ¢Bzx))

2m
_ e (—h2¢" + ¢(qBx — hk)?)
- 2m q
n? d*  (qBx — hk)?
§E¢‘<mnme+2m>¢

GG N q? B2 Bk \? 5
N 2m dx? om \* qB
Notice the RHS looks like a displaced harmonic oscillator with Hamiltonian

. hod® 1 5
= “omazz T 3@ )

Where in this case

(%)

w=|—

m
hk

T = —
0 qB

As the Hamiltonian is just a displaced oscillator, the eigenvalues are those of an oscillator: E, =
(n+1/2)hw. The eigenfunctions are also those of an oscillator, although displaced by xy. Note that
the energy doesn’t depend on k, so the system is infinitely degenerate as any choice of k yields the
same energy.
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10.4 Hydrogen in a Uniform Magnetic Field: Zeeman Effect

Consider the minimal coupling Hamiltonian with a gauge A = %B xr, where B = Bk. Let’s expand
it:

R ~2 2A2
go P LA 5.
2m 2m m
N
HO
21 A |2
ro , CIA] q .
=F'+1 = _ 1 5. Bx
* 2m 2mp( r)

Notice we have treated everything that isn’t the free particle as a perturbation. Now let’s use a
vector identity:

21 A2
co  CIA] q .
Sy - N i N ;)
+ 2m 2m (r>xp)
N 21 A2 ~
:H0+q| | _195.1
2m 2m

We also can find the value of |A|? from its definition:

) R 232( 2 2 ~
Fopoy CBEHY) g g g
&m 2m
—_———

small, can ignore

So our perturbation is effectively

siH—=_18.1
BL.,

Now we would like to know the corrections to the energy that this produces. This is a degenerate
problem: our original states are |nlm) and there is therefore degeneracy due to multiple values of
m, [ for each energy. We may as well see if these are good states:

qB

§H |nlm) = ~3 L. |nim)

qBhm
== |nlm)

So it turns out they were the good states all along, and as the corrections are given by the eigenvalue,

. Bh
the hydrogen energies are changed by the amount — q2m:n

10.5 Hydrogen in a Uniform Electric Field: Stark Effect

10.5.1 Ground State: Quadratic Stark Effect

In this section we consider the effect on the ground state energy of a hydrogen atom in a uniform
electric field. This is done with perturbation theory. Recall that an electric field appears in the
Hamiltonian as a +q¢ term, where ¢ is the potential. If E = Ek, you can check that ¢ = —Er cos
and hence our perturbation is 0 = —eErcosf. We can plug this into our formula for 1st order
energy correction: Ef = —eE (100|r cos 0100). Notice:

(100|r cos 6|100) oc/ cosfsinfdf =0
0

So there is no change at 1st order. Let’s look at 2nd order.

(100|eE'r cos B|nim)
Bf=- )

EO — EO
n,l,m#1,0,0 1 n
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Somewhere in the depths of Binney and Skinner you can find a way to evaluate this integral, but it
is needlessly convoluted and I haven’t got the patience to try and understand it and then transcribe
it here. It will probably not come up, as it only tests your ability to do a ridiculous integral and
not any actual physics, and if it does you will be guided through it. Anyway that aside, the integral
(allegedly) evaluates to

B 9e2E2a%
4R
Where R is the Rydberg.

E} =

10.5.2 Excited States: Linear Stark Effect

We'll consider the 1st excited state, n = 2. This is a degenerate perturbation theory problem as we

have 4 degenerate states: |200) , |21 — 1) ,|210),]211) to which we associate (1,0, 0, 0), (0,1, 0,0), (0,0,1,0), (0,0,0,1)
respectively. To get the 1st order energy correction we need the matrix elements of §Hy, and to get

those we need the integral

—eE (21'm/|r cos 0]2lm)

M

Notice we can get rid of a load of cases by considering the selection rules:

21
Moc/ (ew)m_m,dqb
0

Which = 0 for m # m’ and = 27 for m = m/. Also consider the case I,m =1’,m/. If we look at the
list of spherical harmonics, we can see that there are three cases to consider:

M / sin® 0 cos 6d6
0
x [sin* 0]F = 0
or

M oc/ cos® 0 sin 0d0
0
x [cos* )7 =0
or

M oc/ cosfsinfdf =0
0

So in all cases they equal zero. This leaves just two non-zero matrix elements: (200|r cos #210) and
its conjugate. Let’s step through the integrals.

™ 1 V3 > a;? r a7
M= (2 —— 1= ginfcos? GdQ/ 32— <1 — )e_r/Qaz = e/ ) gy
(”’/o 27 2/m 0 V2 2a. 26 a

s oo 4
= 1/ sin 6 cos? 9d9/ (r) (1 _ L )e—T/azdr
8 Jo 0 a 2a,

Now let p =r/a., so dr = a,dp:

_ Gz “4( p)_
== 1-E)erd
12/, ° 2)¢ P

I
|
oe
&
=2

—3a,
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Hence we have the matrix

0 010

- 0 00
0Hy = 3eFEa, 100 0
0 00O

Which has eigenvectors %, %, (0,0,0,1),(0,1,0,0) with eigenvalues—3eFEa,, 3eFa,,0,0

respectively. These are our energy corrections.
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Chapter 11

The Variational Method

I will start by proving an important theorem and then go into more detail on what it implies.

11.1 The Variational Theorem

Suppose we have a set of orthonormal energy eigenstates. |n), n = 0,1, ... such that Fy < Ey < ...
By expanding in these states [¢)) = )", ¢ |m) we can show

D olenl? = @) =1

due to normalisation. This holds for any state |¢)). Now, lets consider some ‘trial state’ |¢;) (the
meaning of this will become clear soon) and find the expected value of the Hamiltonian in this state:

(WelH ) =) D cinen (mlHn)
=2_lenl B
Now let’s add and subtract Eg Y, |cm|?, so we add zero:

= Ep Z ‘Cm‘Q "’Z |Cm|2(Em - EO)

Eo >0

As the energy increases in each level. So overall we have (1| H|1) > F.

11.2 So What?

This means that if we have a situation where we don’t know the wavefunction but would like to
know the ground state energy, we can make a guess at the form of the wavefunction by way of a trial
wavefunction ;. This will have some parameter in it that we can minimize the quantity (¢ H|t)
with respect to. When we have minimised this quantity, we have an upper bound for the ground
state energy.
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Chapter 12

Time-Dependent Hamiltonians

12.1 Sudden Limit - Fast Hamiltonians

In this case the Hamiltonian undergoes an instantaneous change after a certain time, say ¢t = 0,
but the Hamiltonians either side of ¢ = 0 are time-independent. This will yield two sets of energy
eigenstates. As the ground state for the initial Hamiltonian may not be the ground state for the
final one, there may be a chance the system is excited by the change.

12.2 Adiabatic Limit - Slow Hamiltonians

The idea here is that if the Hamiltonian changes slowly enough, and if the system is in the nth
eigenstate, it will remain there after the change. There is a proof for this in Prof. Parameswaran’s
notes but I am confident such a proof will not be examined.

12.3 Time-Dependent Perturbation Theory - Small Hamil-
tonians

This method applies to Hamiltonians of the form H = H® + V(t), where V(t) is a small time-
dependent perturbation. We expand |i) as normal, but let the coefficients of the expansion be
time-dependent:

() = > enlt)eFn /" n)

Where H° |n) = E,, [n). Applying the TDSE:
H |¢) = ihd, |¢)
. ; N
= zhzn: () <6 Ent/he — Cne E"t/h>
_ ZihefiEnt/hén In) + ZCTL(iEW,t/hEn In)

=D ene™ B + V) )

= ihe T Et e, n) = e, e TEMY )

n

Now let’s bra through with (m|,m # n:

ihe Emt/he - — che*iE"t/h (m|V|n)

n

1 .
e — _’L(En_Emr)t/h
= lm = o En cne (m|Vn)
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As V is a 1st order correction to the Hamiltonian, the quantity e~ "En=Em)t/h (;m|V|n) = eM,,,
is a 1st order (order €) matrix element. We can also expand ¢,, to 1st order:

Cm = c,(ﬁ) + ecﬁi) + ...
Subbing this in:

O el = Z(CSLO) + ectVeMpy

n

Comparing 0th order terms gives éﬁ,?) =0= 07(2) = const = cﬁ,?) (0). At t = 0 assume perturbation

is off so € = 0. This means cSS) = ¢, (0). Now let’s compare 1st order terms:

) =" Mynca(0)

o

Let the system be in the eigenstate |i) at ¢ = 0. So ¢, = d;,,. Hence ¢ M,,; and to 1st order we

have an expression for ¢,,:

1
b = éﬁg) + 667(713 =eM,,; = %e—l(Ei—EnL)t/h (m|V|i)
2

12.3.1 Time-Periodic Perturbations and Fermi’s Golden Rule

Integrating both sides, and looking for the coefficient of landing in a particular final state f:

I ,
cf=— [ e "FEDLR(FV i) di!
ih 0
Now let’s let wy; = Eng Also, let V be a time-periodic perturbation, i.e. V = Vye~ i
L Y
— (wyri—w V . dt/
=g ] e (7ol
, , t
_ 1 lew—“)t (FIVoli)
h Wp —w o
_ <f|V0|Z> (ei(wfifw)t o 1)
hwpi —w)
L ey LUIVOI 2 sin (g — w)t2)
d 0 (wrs —w)/2)?2

02 (w0 rs—
The function % is sharply peaked at w = wy;, and its integral over that pea equals

27t. Hence we can approximate it with a delta function:
2 2mtd(w — wy;)
B2

Then the probability per unit time, or the transition rate, is

les? = | (f|Voli)

2 216 (w — wy;)
72
We discussed the case of the perturbation being made up of a single frequency, w. However if it is

made up of a range of frequencies density p(w), then the transition rate would be the integral over
all of them with the density function:

rw = | {fIVoli)

r= | (7IVoli) P21

h2
For a density of states g this yields
N 02mg(E
=1 ivaliy P22

With one less factor of A as dE = hdw.

1See complex analysis short option.
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12.4 Worked Example: Sudden Beta Decay

Question 8. H? suddenly undergoes beta decay and becomes (He3)™. Assuming the electron is in
the ground state of H?3 initially, what is the probability it remains in the ground state of (He3)™t
after the change?

The probability P we want satisfies
VP = (1007¢|100")

1 o) ) (1/ap+1/az) 27 iy
—_— rée”T\H/aBTi/az dr/ / sin 0dOd
77(0302)3/2 /0 0 0 ¢

Now let p =r(1/ap 4+ 1/az). Then:

4 o0
VP = (55 + 2)Vapaz)? /0

(e =)

Recall as = ap/2. Then we have P = 64/(% +2)0 ~ 0.7

pre Pdp

12.5 Worked Example: QHO Perturbation III

Question 9. A harmonic oscillator of mass m and frequency w is initially (att = —o0) in its ground
state. A perturbation eze /T s applied. Find the probability P that the oscillator transitions to
the first excited state, at late times (t = 00).

The quantity we want is P = |c1(¢)|?. The relevant formula is

1 )
%efz(ngEl)t/h <1|6i67t2/72 |0>

Plugging in the energies and wavefunctions:

) 2 o0 ,
= etz [T me/ w2 dy
ih VeV r )
€ h ; 2

wt— =
72

¢1 =

ih V' 2mw

Now we integrate to find c¢; at late times:

oo
c1 = ,i\/ _h / em_%dt
th V 2mw J_

Let T =t/T:

h R
Ly / W TT=T%gp
ih V 2mw J_

Complete the square in the exponent:

€T h o . 2 2
L —(T—iTw/2)*—(Tw/2) dT
“ ih V' 2mw /_Doe

€T h 2 [ ) 2
_ = —(Tw/2) —(T—iTw/2) dT
iV 2mw© /_Ooe

=V
See complex analysis for details on how to evaluate that last integral. Then we are done:

2.2 5
TE™T 77_2(”2/2

C 2mwh

63



Chapter 13

Identical Particles

In this course we deal exclusively with non-interacting particles. As you will recall from the composite
systems chapter, this implies that the system’s wavefunction can be decomposed by separation of
variables into wavefunctions of the system’s parts. In other words:

Y(r1,r2) = ¢1(r1)g2(ra)

But there’s a problem. As the particles are identical, then swapping them over should leave all
physically measurable quantities invariant. This corresponds to the fact

|w(r1,r2)|2 = \¢(r2,r1)|2

Which of course means that ¢ can only gain a phase under a swap of the particles:

P(ry,11) = €Y (r,12)

Now let’s swap them again:

P(ry,12) = (") (r1,12)
= e = 41

So whatever our composite wavefunction is, it must either stay the same or change sign under swaps
of the two particles. Let’s test this on our wavefunction from before:

¥(r1,12) = d1(r1)d2(r2)
¥(r2,11) = ¢1(r2)d2(r1)
This does not differ from the original by at most a sign, so this wavefunction is not allowed. The way

we solve it is by so-called symmetrisation and anti-symmetrisation. The TISE is a linear differential
equation, so we can linearly superpose solutions. Lets construct symmetric solutions;

1
Yy(ri,re) = ﬁ(%(rl)@(m) + ¢1(r2)p2(r1))

Now when we swap the particles, the wavefunction is exactly the same. Particles with wavefunctions
like this are bosons. We can also construct antisymmetric solutions:

1
V2

Where we have the second case, that the wavefunction picks up a minus sign under a swap. These
particles are fermions.

Y (r1,re) = —=(¢1(r1)d2(r2) — d1(r2)¢2(r1))

13.1 Pauli Exclusion Principle

Let’s see what happens if we have a wavefunction for a pair of fermions that we have placed in the
same physical location such that ry =ry =r.
1

75 (01(0)02(x) = 61(r)2(x)) = 0

1/)(1'7 I') =
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So the wavefunction goes to zero, hence the probability of finding two fermions in the same place is
zero. It’s a bit more subtle than that, and in fact you can overlap fermions if you give them different
spins. The formal statement of the Pauli Exclusion Principle is that two identical fermions cannot
occupy the same quantum state.

13.2 Exchange Interactions

We've seen that fermions can’t be in the same place (if everything else in their state is the same).
Let’s look at quantifying how they stay apart in practice. We’ll do this by first looking at

((#1 — £2)%) = (&2) + (82) — 2(&142)

We'll do this in one dimension for simplicity but the argument equally applies to three. Anyway.
First the distinguishable case, where the wavefunction is a simple separation of variables: 1, =

¢1(x1)P2(z2). We have

(#7) :/Qf’fx?éf)ldm/éb;@d@
=1
So it equals the expected value of 27 when in the single particle state ¢;, which we denote (27);.

Similarly you can show that (#3) = (23)2. Finally:

(T182) = /¢T$1¢1d$1 / ¢5x202dxs = (21)1(F2)2
So overall for distinguishable particles we have
(@1 — 22)%) = (#1)1 + (23)2 — 2(21)1 (E2)2

Or, as the coordinate number doesn’t matter (even though they’re distinguishable, they will have
the same physical constraints, so all that matters is the state the expected value is taken with respect
to) we may as well write

(&1 = &2)) = (@)1 + (@%)2 — 2(2)1(2)2
Now let’s look at identical particles.

<£f> = /@/}*izfq/)idzldzg

1

=3 /xf(éﬁ(fﬂl)@(f@) + ¢7(22)93(21))(P1(21)P2(w2) £ 1 (w2)P2(21))dz1d2s

=5 ([ di@atorendn [ 6aoatednt [ o1(en)stoste)dor [ 01205 (r2)dos

=1 =0
i/%(%)ﬁ@(xl)déﬂl/¢T($2)¢2(ﬂ?2)d$2+/¢;($1)$%¢2($1)d$1/¢T($2)¢1($2)d$2)
=0 =1

1 9 -2
= 5D + (@)

Where the integrals that are zero or one are such due to orthonormality of the wavefunctions.
Similarly for (£3):

(@) = 3((331 + (3)2)
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Now let’s look at (Z1d2):

(i13) = 5[ Gi@nmon (@ [ 6320w
+ / 61 (1)1 (21)dey / 61 (22)285 (2) s & / o1 (1)1 63 (1) / 01 (22)r20(22) s
+/¢§($1)$1¢2($1)d111/¢T($2)$2¢1($2)d$2)

Let’s introduce the notation for these so-called ‘overlap integrals’:

/qﬁf(iﬂk)fﬂmj(ﬁck)dﬂfk = (T )ij

So we have
(T122) = %((9?1)1@2)2 + (Z1)12(T2)21 £ (1)21(®2)12 + (T1)2(T2)1)

We can further simplify by noticing that (2%); = (£3); = (2%);, (1); = (£2); = (2); and (21);j =
(&2)i; = (Z)s; as the particles are identical. Hence:

(&1 — 22)%) = ()1 4 (&%)2 — 2(2)1 ()2 F 2(2)12(%)21

Which is related to the distinguishable case by

(21 — #2)%)idens. = (&1 — £2)*)a F 2(&)12(&) 21
So bosons (the upper signs) tend to be closer together than fermions (the lower signs), compared
to distinguishable particles. Notice that the overlap integral vanishes unless the two wavefunctions
overlap (are both non-zero over some common part of their domain). This means that for non-
overlapping wavefunctions, the two identical particles behave as they are distinguishable!

13.3 Space and Spin

We need to bring spin into the picture. First, recall that bosons have symmetric states and fermions
have antisymmetric states. Spin states can be symmetric and antisymmetric too, and together with
the wavefunction form part of an ‘overall’ state of a particle. If we want to construct a state for
bosons, we need either both spin and space states to be symmetric or both to be antisymmetric so
that the overall state is symmetric. For fermions, they need to be one of each. For spin 1/2 particles,
the symmetric states are the triplet states, and the antisymmetric state is the singlet state. Convince
yourself of this by swapping the particles in these states, as we did before with the wavefunction.
We write such an overall state as 1)) = |space) ® |spin).

13.4 Worked Example: Particles in a Box

Question 10. Two non-interacting particles of mass m are confined to a 1D box of length L.

1. Suppose the particles are identical spin-zero bosons. What is the wavefunction if the system is
in an eigenstate with total energy

h2 2

(a) e
2_2

(b) St

2. Now repeat with the particles being spin 1/2 fermions.

As the particles are non-interacting, the energy is the sum of the individual particle in a box energies:

h2m?
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We also know the wavefunction of the nth level is

2
o = \f s (222
a a
So for part la, the un-normalised wavefunction would be
¥ = Y(z1)h1(z2)

And for part b, clearly one particle is in n = 1 and one in n = 2. So we need to make a symmetric
wavefunction:

Y =1 (z1)Pa(r2) + Y1 (22)Y2(21)

For the fermion case in part a, we have a symmetric space part so we need an antisymmetric spin
part:

Y = 1 (1)1 (22) @ [singlet)

And for part b, we could construct an antisymmetric space and symmetric spin wavefunction:

Y = (Y1(21)¢2(22) — 1 (22)2(21)) @ [triplet)

For any triplet state. Or, we could construct a symmetric space and antisymmetric spin one:

Y = (Y1(21)2(22) + b1 (22)a(21)) @ [singlet)
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Chapter 14

Helium

14.1 Gross Structure Hamiltonian

Helium’s Hamiltonian is

- h? h? 22 (1 1 2
H=-Vio V3= (= =) —
m 71 792 47T€0|I'1 — I'2|

Notice that the nuclear charge is +2e and the final term is the electron-electron interaction term.

14.2 Singlet and Triplet Configurations

As electrons are fermions, their overall wavefunction must be antisymmetric. This means that
if they are both in the n = 1 state (symmetric), then they must be in the singlet configuration
(antisymmetric). The next excited state is one electron in n = 1 and one in n = 2. We are free to
construct either a symmetric of antisymmetric space part, and then fix the spin to ensure the overall
antisymmetry. Supposing we chose a symmetric space part, we would have to chose the singlet
configuration. The symmetric space part would also make the particles behave like bosons (at least
where exhange interactions are concerned) and be somewhat closer together. This would give them
a higher interaction energy. If we choose an antisymmetric space part, we must then choose a triplet
state for the spin part. This configuration (orthohelium) will be somewhat lower in energy than the
singlet (parahelium) configuration.

14.3 Ground State: Variational Method

Recall that if we ignore the interaction term, we can use separation of variables and write the
wavefunction as a product of hydrogenic wavefunctions:

1o = Y100(r1)Y100(r2)

3
_ Z efZ(rlJrrz)/aB
Tay

Where in this case Z = 2. This doesn’t give a great approximation of the experimentally measured
energy, so a better option would be to treat Z as a variational parameter and optimise with respect
to it to get an upper bound for the ground state energy. This is motivated by the fact that the
nuclear charge is partially shielded from one electron by the other electron, so the effective Z will
not be exactly 2. Let’s rewrite the Hamiltonian in terms of Z:

~ K2 Ze? 1 1 €2 Z -2 Z-2 1
H=——(Vi+V3) - —+ =
Zm( ) 47eq <r1 + 7“2) + 47eq < e] * 9 + vy — r2|>

Notice that the terms —%(V% + V3) - 42:620 % + %) constitute two copies the Hamiltonian of a

hydrogen-like ion with atomic number Z. The expected value of this part would be the expected
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value of energy of a hydrogen-like ion, times 2, i.e. 2Z°R with R = —13.605693eV. If we take the
expected value of the whole we therefore get

- Z—2)e? /1 1
(1) = 222r + £ =2 < + > + (Vee)
47T€0 1 T2

(Vee) is the expected value of the interaction energy. You can find a step-by-step guide to evaluate
the required integral in Griffiths. The result is (Vie) = —32%. We also need to find the value of

< Ly é>, which is thankfully straightforward to evaluate:

=
1 1 A 1 1
(o) =gmg [ [ ][ [ rismosrtsinone2emion (L 2 drsdtyaondradtion
B
162° 2 —2Z(r1+r2)/aB 2 —2Z(ri+r2)/a
=— riroe dridre + riTse 120195 dry drg
ap

The two integrals are equal due to symmetry, so we remove a copy and double the result:

3276
=—5 /rle*QZ”/GBdrl/rgefzzrz/“’gdrg

ap

Let « =2Zr1/ap,y = 2Zrs/ap. Then:

3275 rap\5 [* >
= -z —d 2e7vd
i (57) [ weae [ e

=1 =2

So overall we have
< 1 1 > 27
— 4+ y==
T1 T2 ap

Then our expression we need to minimise is (H)
further to

_ 92 e’(2°-22)  5ZR

2mepap

. This can be simplified

(H) = (-22% + 6.75Z)R
Optimising we get Z = 1.6875 and hence our upper bound on the ground state energy is
E > 5.6953125R = —77.49eV

The experimentally measured value is -78.975eV, so we’re pretty close!

14.4 Ground & Excited States: Perturbation Theory

Let’s begin by ignoring the electron-electron interactions. Then, we can separate variables, using
the product of hydrogenic wavefunctions. Again, the ground state has unperturbed energy of 2Z2R,
i.e. 8R. We then treat the electron interaction term as a perturbation and we can get the energy
corrections of any state:

El = (nim)|

n

You can find a step-by-step evaluation of this integral in Griffiths (for the ground state), and the
final result is —%. Hence we get, to first order, the energy of the ground state as

E =55R = —-74.83eV

So, pretty close to the experimental value.
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