
PPD Summer Student Report

MIGDAL Collaboration

Tom Szwarcer

University of Oxford

1st July 2024 - 23 August 2024

Contents

1 Introduction 2

I Preliminary Work 2

2 Goals and Motivation 2

3 Literature Search 2
3.1 Understanding Scintillation Mechanisms in CF4/Ar Mixtures . 2

4 Properties of CF4 3
4.1 PyBoltz Installation . 3
4.2 Data Acquisition . 3
4.3 Data Analysis . 4
4.4 Results . 4

5 Single GEM Geometry and Electric Field 4
5.1 Overview . 4
5.2 GEM Unit Cell Model . 4

5.2.1 Half-Hole . 4
5.2.2 One-Hole . 5
5.2.3 Two-Hole . 5

5.3 Generating the E-Field Map . 6
5.3.1 Boundary Conditions . 6
5.3.2 Finite Element Analysis . 6

5.4 Testing the Model & Field Map . 6
5.4.1 Field Artefacts . 6
5.4.2 Results . 7

6 Collision Tracking in Garfield++ 7
6.1 Tracking with GetNumberOfElectronCollisions() . 7
6.2 Tracking With User Handles . 8

II Simultaneous Light and Charge Simulations 9

7 Goals and Motivation 9

8 Double GEM Geometry and Electric Field 10
8.1 Testing the Model & Field Map . 10

9 Gas Gain Simulations 10
9.1 Counting Electrons . 11
9.2 Data Analysis . 11
9.3 Results . 11

10 Simultaneous Light and Charge Simulations 12
10.1 Converting Collisions to Scintillation . 12
10.2 Understanding Scintillation Mechanisms . 12
10.3 Reducing Computation Time . 12

10.3.1 AvalancheMC and AvalancheMicroscopic . 12
10.3.2 Parallelising the Gas File . 13
10.3.3 Parallelising Second-GEM Avalanches . 13

10.4 Efficiency . 13
10.5 Data Analysis . 14
10.6 Results . 15

11 Conclusion 15

1

1 Introduction

During this summer placement, simulations were done to better understand the visible scintillation and electron
transport properties of CF4/Ar mixtures in gas electron multipliers (GEMs). The simulated GEM specifications
matched those of the detector used in the MIGDAL experiment [1], in the hopes that results obtained during
this placement could be used to advance the understanding of processes occurring in the detector, with the goal
of optimising its performance.

Part I

Preliminary Work

2 Goals and Motivation

A project goal was the detailed simulation of visible scintillation in a CF4/Ar double GEM system. Before
carrying this out, some preliminary work was required. Firstly, a literature search was done in order to gauge
the current understanding of visible scintillation in this particular gas mixture. It was also useful to know if
simulations of this type had been done before. Secondly, a brief investigation into the properties of CF4 was
done, primarily to learn if the Cython-based Pyboltz [2] could be more adaptable and useful for the needs of
the project than the Fortran-based Magboltz [3]. Thirdly, a single GEM system was simulated, in order to
gain familiarity with the tools required to generate the geometry and field map and simulate electron transport.
Using a single GEM system at this stage had the added benefit of being able to test code more quickly, as
double GEMs are much more computationally intensive to simulate than single GEMs. Within this single GEM
geometry, code for tracking individual scattering processes was developed, and later applied to a double GEM
geometry.

3 Literature Search

3.1 Understanding Scintillation Mechanisms in CF4/Ar Mixtures

Figure 1: Overview of the processes involved in the scintillation of CF4 and Argon.

Data collected by the MIGDAL collaboration shows the addition of Ar to CF4 can result in higher light yields
for a given amount of charge collected. We would like to simulate the scintillation of CF4 and Ar in order to
better understand this effect and the processes involved. A summary of the mechanisms [4] is given in Figure 1.

2

4 Properties of CF4

A short investigation was done into the electron transport properties of CF4. Normally, this would have been
done using Magboltz, but PyBoltz, a refactorization of Magboltz into Cython, showed promise in potentially
being more adaptable to our needs. Using Pyboltz for these simulations would also tell us about its accuracy
and efficiency compared to Magboltz, which could inform future projects.

4.1 PyBoltz Installation

PyBoltz proved difficult to install on Python 3.9.18, the version used on our systems. After a few small
modifications to the source code and writing of new setup files, a new version of PyBoltz plus installation
instructions was uploaded to GitHub [5].

4.2 Data Acquisition

A Python script was written in order to get the relevant data out of PyBoltz, in the correct format for later
analysis. The program generated 200 logarithmically spaced E-field values; the gas parameters were calculated
once for each value. Certain parameters were highly susceptible to statistical fluctuation (such as diffusion coef-
ficients), and this process meant they would not benefit from the smoothing that taking multiple measurements
and finding a mean would yield. The choice to take a single measurement per E-field was made due to time
constraints.

(a) PyBoltz simulation (b) MIGDAL simulation

(c) PyBoltz simulation (d) MIGDAL simulation

Figure 2: Comparison between PyBoltz simulations and Magboltz simulations carried out by the MIGDAL
collaboration

3

4.3 Data Analysis

A Python notebook was created in order to analyse the data from PyBoltz. Its functionality was simply to read
in the parameters generated by PyBoltz and plot them as a function of E-field.

4.4 Results

The results and comparison to MIGDAL simulations (done in Magboltz) can be seen in Figure 2. It is shown that
Magboltz and PyBoltz agree quite well in diffusion, drift velocity and attachment, but there is a disagreement
with the Townsend coefficient. It was unclear what the cause of this disagreement was, and this project was
not taken any further in order to focus on other simulations.

5 Single GEM Geometry and Electric Field

5.1 Overview

There are a few steps involved with creating the GEM geometry and defining the E-field within it;

1. Create a 3D model of the GEM unit cell

2. Create a mesh over the model for finite element analysis

3. Define the relevant boundary conditions (BCs)

4. Solve for the E-field over the mesh

5. Test the E-field map

6. Drift electrons within the GEM geometry, in the presence of gas and E-field

5.2 GEM Unit Cell Model

We begin with creating a 3D model of the GEM unit cell. This was done with the software Gmsh [6]. A choice
needed to be made regarding which unit cell configuration would be used; the simplest (half-hole) was tried
first, with the number of holes increased until the simplest configuration that suited our needs was found.

5.2.1 Half-Hole

Figure 3: The half-hole unit cell (bottom left) and its tiling to reproduce the GEM geometry

4

The half-hole unit cell (Figure 3) was easy to design but difficult to implement boundary conditions with. The
software Elmer FEM [7] was used to generate the E-field maps; in Elmer, periodic boundary conditions are
defined by specifying surfaces (known as physical surfaces) subject to BCs, and defining how different physical
surfaces are linked to each other periodically. The issue with this geometry arises due to the half-hole unit cell
not having a complete set of the necessary surfaces that are accessible through translation. With reference to
Figure 3, all sides are periodic to themselves under a reflection due to the mirror periodicity in both directions.
It was unclear if such reflections of the boundary conditions were possible in Gmsh/Elmer, and it was decided
that we would proceed with trying larger unit cells.

5.2.2 One-Hole

(a) The one-hole unit cell. Note the splitting of
the upper surface, necessary to assign periodic
BCs.

(b) The translations required to impose periodic
BCs in the one-hole unit cell

Figure 4: The one-hole unit cell

The one-hole geometry is shown in Figure 4. This geometry has all the needed sides accessible through trans-
lations, as shown in Figure 4b. Here the issue is the splitting of the top and bottom sides into A/B and A’/B’.
Within the OpenCASCADE system in Gmsh, it proved difficult to split the surfaces that bound a volume into
multiple connected (but separate) individual surfaces. It was a particular challenge to do this without ending
up with duplicate surfaces, and then to impose the correct boundary conditions. In the interests of time, the
decision was made to use a larger but more symmetric unit cell.

5.2.3 Two-Hole

Figure 5: The two-hole unit cell.

5

The two-hole geometry is shown in Figure 5. In this case, two pairs of surfaces are simply related, with no
surface splitting required. It was simple to implement periodic BCs in Elmer as well.

5.3 Generating the E-Field Map

5.3.1 Boundary Conditions

Figure 6: The voltage configuration of the single GEM geometry

For the single GEM case, all testing was done at a ∆V = 600V. The voltages are indicated in Figure 6. These
voltages were set in the .sif file, to be read by ElmerSolver. Also set was the requirement of the potential
being periodic for opposite surfaces.

5.3.2 Finite Element Analysis

Once a 3D mesh was produced with Gmsh, it was converted to a format that ElmerSolver could understand
by using ElmerGrid. Following this, the boundary conditions were implemented, and ElmerSolver was used to
find the potential throughout the mesh.

5.4 Testing the Model & Field Map

The field map and model geometry were tested in Garfield++.

5.4.1 Field Artefacts

The first successful iteration of the model revealed artefacts present in the field map (Figure 7). These were
fixed by re-compiling Garfield++.

Figure 7: Equipotentials of the single GEM configuration. Note the artefacts present in the field map. Note
further that in this configuration, the voltage order was reversed from that shown in Figure 6. This was corrected
for all subsequent plots

6

5.4.2 Results

The field map was investigated, and plots of field lines, equipotentials and E-field magnitude were produced
(Figure 8). In addition, test avalanches were run, an example of which can be seen in Figure 9.

(a) Field lines (b) Equipotentials (c) E-field magnitude

Figure 8: Testing carried out on the single GEM field map and geometry. The black box is the dielectric, with
the holes at either side.

Figure 9: Test avalanche run in the single GEM configuration. Note the losses to GEM walls

6 Collision Tracking in Garfield++

It was unclear how to go from an understanding of which states were involved with the visible scintillation of
CF4/Ar to tracking the number of scintillation events that occurred for a given avalanche. It was noticed that
Magboltz gives as output collision frequencies for a given process resulting from a collision, e.g. ionisation. An
example of such processes for pure CF4 is given in Figure 10.
Hence, the key would be to gain access to this information, and as Garfield++ interfaces with Magboltz, to use
it during electron avalanches to track collisions resulting in scintillation-related processes.

6.1 Tracking with GetNumberOfElectronCollisions()

The first way this was done was with Garfield’s function GetNumberOfElectronCollisions(), which is part
of MediumMagboltz. This takes as input the level index of the scattering process you would like to track the
collisions in - indexed consecutively from one. If you are interested in tracking a particular process, you would
first need to identify its index, and then simply call the function with the index as input. In practice, the index
was identified by saving a list of all the possible levels, choosing an energy from the list, then comparing the
energy of all levels reported by Garfield++ to the energy of the level of interest and returning the index if there
is a match.

7

Figure 10: The first few electron collision-induced processes in pure CF4. Energy listed is electron energy loss.

6.2 Tracking With User Handles

Another way of tracking collisions involved user handles. A user handle is a function that is called whenever
a certain event takes place; for example, upon each collision. User handles provide access to the location of
the collision, energies involved, directions of the electron before and after, and crucially the level index of the
scattering process. This allows us to track the number of collisions occurring in particular levels of interest,
and restrict the tracking of collisions to a particular region. This is beneficial as in the MIGDAL experiment’s
double GEM configuration, the vast majority of the light detected by the camera originates from scintillation
in the lower GEM. This could allow for increased efficiency by reducing the region collisions are tracked over.
Nevertheless, with the benefit of hindsight, it seems clear that GetNumberOfElectronCollisions() would be
more efficient than the user handle method: Garfield++ will calculate the number of collisions in a particular
level with GetNumberOfElectronCollisions() anyway, and using a user handle would essentially count them
in two different ways for no reason. Another potential slowdown of the user handle method is that for each
collision, a for loop had to be run to compare the level index of the collision to the tracked level indices, and
increment the relevant level’s counter accordingly. While this is a trivial operation, it may lead to inefficiencies
over many millions of collisions. The programs that were written to track collisions in levels of interest proceeded
with the user handle approach.

8

Part II

Simultaneous Light and Charge Simulations

7 Goals and Motivation

As discussed previously, data collected by the MIGDAL collaboration shows the addition of Ar to CF4 can
result in higher light yields for a given amount of charge collected. We would like to simulate the scintillation
of CF4 and Ar in order to better understand this effect and the processes involved.
It was decided that two important MIGDAL results should be reproduced in simulations. The first of these was
a plot showing gas gain for different CF4/Ar ratios (Figure 11), in order to confirm the simulations accurately
measure charge, and the second was a plot showing simultaneous charge and light measurement in the same gas
mixtures (Figure 12). The latter shows the aforementioned effect on light yield of adding Argon to CF4. This
effect is useful as it allows the GEM ∆V to be kept lower with no loss in light, preventing discharges while still
allowing low energy tracks to be resolved.

Figure 11: MIGDAL data showing gas gain for different CF4/Ar ratios.

Figure 12: MIGDAL data showing simultaneous light and charge measurements for different CF4/Ar ratios.

9

8 Double GEM Geometry and Electric Field

In order to simulate electron transport in a double GEM, the electric field and geometry needed to be generated.
Again, this was done in Gmsh and Elmer. The two-hole unit cell was used once again, with the process being
identical to the single GEM case. The specifications are shown in Figure 13.

Figure 13: Specifications of the double GEM setup.

8.1 Testing the Model & Field Map

Once the geometry and field map had been generated, they were tested. This was once again done in Garfield++.
Figure 14 shows the results of these tests.

(a) Equipotentials (b) E-field magnitude (c) E-field profile

Figure 14: Testing carried out on the double GEM field map and geometry at ∆V = 600V.

In addition to the field map tests, test avalanches were run. These were limited to a maximum size of 1000, as
the double GEM system proved to be computationally intesive to simulate. No data needed to be collected at
this stage, so the size limitation was justified. A sample result can be seen in Figure 15a. Here, it can be seen
that drift lines appear to pass through the dielectric: this is a side effect of projecting a 3D avalanche into a
2D plane. As Figure 15b shows, all electrons pass through the holes in these simulations. The data in Figure
15b was collected with user handles: every time a collision occurred near the bottom edge of the second GEM,
a user handle would record the location of said collision. These were saved to a CSV file and plotted with a
Python notebook.

9 Gas Gain Simulations

In order to measure light and charge simultaneously, we first wanted to be sure that our simulations could
handle charge measurements correctly. Once this was confirmed, we would then proceed to light measurements.
Gas gain was defined as the number of electrons collected at the anode divided by the number of primary
electrons. As each avalanche was started by a single primary electron, the gas gain is simply given by the
number of electrons collected at the anode.

10

(a) Test avalanche with size limit 1000
(b) Electrons exiting holes (for a different avalanche),
viewed from below the 2nd GEM

Figure 15: Test avalanches run on the double GEM field map and geometry.

9.1 Counting Electrons

The method for counting the number of electrons reaching the anode is as follows.

1. Collect information about all of the endpoints of electrons in the avalanche

2. Count the number of endpoints with z-coordinates within a certain small tolerance of the anode z-position.

In practice the second of these was done with the Garfield++ function GetElectronEndpoint().

9.2 Data Analysis

Once the gain data was collected, it was analysed using a Python notebook (viewable on the GitHub repository
[8]). Data was collected for a ∆V range of 590V-620V in pure CF4, and 550V-590V in 70% CF4/30% Ar. The
gain distribution was plotted, and a skew-Gaussian distribution was fitted to the data. The parametrisation of
the skew-Gaussian PDF (f) was given as:

ϕ = e−
1
2 (

n
m−µ)2 (1)

φ = 2
(
1 + erf

(
α
(n

m
− µ

)))
(2)

f = aϕφ (3)

where n is the gain, and m, µ, a and α are fit parameters. The function erf is the error function. This
parametrisation was used to both avoid errors reported by Python and large correlations between parameters
that occurred when using more common parametrisations found in the literature. The mean and standard error
were found from the fit distribution.

9.3 Results

The results are shown in Figure 16. There was a discrepancy of ≈ 1.75× for pure CF4 and ≈ 2.9× for 70/30
CF4/Ar. A discrepancy of a factor of two has previously been observed in low-pressure GEM simulations using
Garfield++ ([9], [10]), likely due to the E-field being taken as constant over the mean free path of the electron.
The long mean free paths and rapidly changing E-fields in a low pressure GEM call into question the validity
of this approximation.
In the operation of real GEMs, there would be some contribution to gain from electrons that hit the walls,
either from back-scattering or emission of secondary electrons. This was not taken into account in these
simulations. To implement this, some information about the rates of these processes would be needed, from
which a probability for each process could be calculated. A certain fraction of all electrons that impact the
walls could be re-introduced into the drift medium, based on this probability.

11

Figure 16: Comparison between simulation results and MIGDAL data for gas gain

10 Simultaneous Light and Charge Simulations

Although there was a discrepancy factor present, this could be corrected for later. Importantly, the gain curves
showed the correct exponential relationship. We proceeded on to simultaneous light and charge measurements.

10.1 Converting Collisions to Scintillation

As shown previously, Garfield can return information about the number of collisions for various different scat-
tering processes (levels) for Argon and CF4. The levels of interest for CF4 are the neutral dissociation levels,
as CF∗

4 undergoes neutral dissociation into CF∗
3(2A

′′
2 , 1E

′)+F. In Argon, we are interested in the production of
the so-called Ar∗∗ state [4].
Possible thresholds (12.5eV for CF4 and 12.91eV for Ar) were identified from E. Seravalli’s PhD thesis [11].
These states were identified in the Magboltz output, and code was written to track the number of collisions in
these states over an avalanche.

10.2 Understanding Scintillation Mechanisms

As these were threshold energies, more information was needed in order to know which range of states we
should track. A meeting was held with D. González-Dı́az and P. Amedo to obtain this info. The conclusion
that was reached was that little can be said about the states corresponding to Ar∗∗ production without further
data; for CF4, their suggestion was to track all states above 14eV, this energy being the likely threshold for
the production of the CF∗

3(2A
′′
2 , 1E

′) state. For both cases, they recommended that we implement a fixed
probability that collisions in the tracked levels will result in scintillation. This probability could be tuned to fit
simulation results to the data. Without sufficient understanding of Ar∗∗ production, we proceeded with CF4

with the aim of obtaining a reasonable value for the number of photons produced per electron.

10.3 Reducing Computation Time

Up until this point, avalanche simulations in the double GEM configuration had been taking a lot of time. A
few strategies were explored to mitigate this.

10.3.1 AvalancheMC and AvalancheMicroscopic

Garfield’s AvalancheMicroscopic class is used to microscopically simulate electrons drifting in the presence
of gas and E-field. This simulation is done using a table of collision rates for each scattering process, and in

12

practice was quite computationally intensive in the double GEM case. This is because an extra ∼2.5mm region
had to be simulated compared to the single GEM case, due to the presence of the transfer region and second
GEM. One solution to this was to use the less computationally intensive AvalancheMC class, which simulates
electron avalanches using Monte Carlo methods.
The main idea was to split the double GEM system into multiple regions. The primary electron began just
above the top GEM, so the drift region did not need to be simulated with AvalancheMC. The system was divided
as follows:

1. Top GEM: AvalancheMicroscopic

2. Transfer region: AvalancheMC

3. Bottom GEM: AvalancheMicroscopic

4. Induction region: AvalancheMC

AvalancheMicroscopic was used in GEMs due to its higher accuracy. The challenge in implementing this
was the hand-off between electrons leaving one region and entering another. The solution was to create a small
overlap between regions and record all endpoints of electrons in this overlap. Then, a new avalanche was started
from each point.
AvalancheMC was used in the transfer and induction regions, where accuracy was less important and large
amounts of multiplication would be unlikely to occur.
Once the GEM had been divided into multiple regions, code was written to hand off all the electrons that made
it into the next region to the relevant avalanche class. This was done using a struct that stored the position,
time, energy and direction of the electrons that reached the next region. The issue with this method was that
AvalancheMC does not make a final electron energy available as output (nor does it take an initial energy as
input): this presented a problem when handing off from the transfer region (AvalancheMC) to the bottom GEM
(AvalancheMicroscopic) as the latter required an energy to be provided as input, but the energy of electrons
reaching the bottom GEM was not reported by AvalancheMC. To resolve this, code was written to find the
energies of electrons reaching just above the bottom GEM, using AvalancheMicroscopic. This code can be
found in the GitHub repository under e finder.C [8]. The code only calculates the energy for a single avalanche
at 600V; ideally, it would be calculated over many avalanches, for a range of voltages. In the interests of time,
and knowing that an individual electron’s energy is subject to huge statistical fluctuations over short timescales,
it was only calculated twice, with good agreement between both values.
The code for this ‘hand-off’ process can be found on the GitHub repository [8].

10.3.2 Parallelising the Gas File

The AvalancheMC class requires a gas file (generated by Magboltz/Pyboltz) to be specified. This is a file that
takes a long time to generate, especially for many electric field values. Code was written (see gastable/ in [8])
to allow gas files to be generated in parallel, saving a significant amount of time.

10.3.3 Parallelising Second-GEM Avalanches

An investigation was done into the possibility of time saving from running avalanches in the second GEM in
parallel. The idea was to begin the first avalanche from a single electron above the first GEM, then record
the locations, times, energies, and directions of all resulting electrons before they reach the second GEM. This
information would be exported and then read in by multiple programs (one for each electron), which would
then simulate an avalanche for each of these second GEM electrons in parallel. In theory, this could lead to
time saves by factors of at least 100, but in practice it was severely limited by the number of cores and typical
number of jobs that could be run in parallel on our cluster. Code was successfully written, but unfortunately
this method resulted in a net time loss for the aforementioned reasons.

10.4 Efficiency

As we were interested in number of photons per electron produced, we needed to know the total number of
electrons produced in each avalanche, including the ones lost to the walls. This number N is related to the gain
G by the following formula:

N = G/e (4)

where e is the efficiency of the double GEM system, i.e. the average probability of an electron making it to the
anode. Code was written to obtain a simulated value for e (efficiency.C in [8]), and was run for ∆V = 590V
over many avalanches. The code was only run for a single ∆V due to time constraints. It yielded a value of
e = 0.1759±0.0007, in agreement with other simulations of losses that had been done previously by a colleague.

13

Figure 17: Plot showing efficiency distribution

10.5 Data Analysis

Data analysis for these results was done in a Python notebook, viewable on the GitHub repository [8]. Sim-
ulations were run for a ∆V range of 550V-610V in pure CF4. For both the light and gain measurements, a
skew-Gaussian fit was used, and the corresponding mean and standard error were found (Figure 18).

(a) Charge production (b) Light production

Figure 18: Example plots for charge and light production in pure CF4 at 590V. These values have not yet had
corrective factors applied (see text)

Corrections were made to the light and charge data. For the charge, a gain correction factor of 1.75 was added,
in order to account for the discrepancy between simulation and data. For the light production, the ‘scintillation
fraction’, i.e. probability of a collision in a scintillation-related scattering processes actually resulting in scintil-
lation was fixed at 0.2, on the recommendation of Dr González-Dı́az. This value was chosen in order to match
results to a rough target of 0.1 photons per electron [12].

14

10.6 Results

Plots of photon numbers against gain, as well as photons per electron against gain were produced (Figure 19).
As the photons per electron value is expected to be pressure-dependent, a rigorous comparison to literature
could not be made, but it is noted that the same downwards trend for increasing gain was visible in [13].
‘Photons per electron produced’ is effectively the (corrected) number of collisions in the relevant levels divided
by N (see Eq. 4), a number also subject to a corrective factor as described previously.

Figure 19: Charge and light simulation results

11 Conclusion

During this summer placement, detailed simulations of charge production in Argon/CF4 mixtures, and of simul-
taneous charge and light production in pure CF4 were done. The key importance in this work is the capacity to be
built upon for future research, and the documentation of the information avaliable from Garfield++/Magboltz
for the purposes of simulating scintillation. A GEM simulation of CF4/Ar visible scintillation could not be
found in the literature, and it is hoped that the code written will prove useful in future work.
It is unfortunate that this project was subject to time constraints; these were brought on by the large amount
of time required to gain familiarity with the software tools that were to be used, and also by some inefficient
decisions that were made along the way.

15

References

[1] url: https://migdal.pp.rl.ac.uk/.

[2] B. Al Atoum et al. “Electron transport in gaseous detectors with a Python-based Monte Carlo simulation
code”. In: Computer Physics Communications Volume 254 (2020).

[3] Stephen Biagi. url: https://magboltz.web.cern.ch/magboltz/.

[4] P. Amedo et al. “Observation of strong wavelength-shifting in the argon-tetrafluoromethane system”. In:
Front. Detect. Sci. Technol 1:1282854. (2023).

[5] url: https://github.com/tomszwarcer/PyBoltz.

[6] C. Geuzaine and J.-F. Remacle. “Gmsh: a three-dimensional finite element mesh generator with built-
in pre- and post-processing facilities”. In: International Journal for Numerical Methods in Engineering
79(11), pp. 1309-1331 (2009).

[7] url: https://research.csc.fi/web/elmer/elmer.

[8] url: https://github.com/tomszwarcer/gemsim.

[9] Djunes Janssens. CERN summer student program rapport: A better understanding of gas gain simulations
in GEM detectors. 2019.

[10] url: https://twiki.cern.ch/twiki/bin/view/MPGD/WG4-Simulation.

[11] Enrica Seravalli. “A Scintillating GEM Detector for 2D Dose Imaging in Hadron Therapy”. PhD thesis.
Delft University of Technology, 2008.

[12] F. Brunbauer. Private communication.

[13] A. Morozov et al. “Secondary scintillation in CF4: emission spectra and photon yields for MSGC and
GEM”. In: JINST 7 P02008 (2012).

16

