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Chapter 1

Vectors and Vector Spaces

1.1 Vector Spaces

1.1.1 Prerequisites: Fields and Binary Operations

A few ideas it would be helpful to introduce first:

Binary Operations

Say we have a set, S. A binary operation f : S×S → S is a mapping such that we take two elements
of S (the S×S), operate on them (represented by the × symbol) and get as a result another element
within S. This is a property called closedness: when an operation on objects within a set produces
another still within the same set.

Fields

A field, say F , is a set of objects equipped with some binary operations that act on its elements.
These operations satisfy the field axioms - more on that later. The operations are:

1. Addition. Denoted a+ b Adding two elements from F results in a third - also part of F .

2. Multiplication. Denoted a · b. Like addition, the set should be closed under this operation.

Field Axioms

The field axioms are a set of rules that the two operations must obey. They are as follows:

1. Associativity: (a+ b) + c = a+ (b+ c) and the same for multiplication.

2. Commutativity: a+ b = b+ a

3. Distributivity: a · (b+ c) = (a · b) + (a · c)

4. Presence of identities: a+0 = a and a·1 = a. So 0 and 1 are the additive and multiplicative
identities respectively.

5. Presence of inverses: a + (−a) = 0 and a · a−1 = 1. Note that the latter doesn’t apply to
0. Note further it is possible to use the idea of multiplicative inverses to define the division
operation, but this is not actually needed to define a field.

1.1.2 Definitions

A vector space (Let’s call it V ) is a mathematical environment that is equipped with the following:

1. Vectors: specifically, a set of them. These are mathematical objects that ‘live’ within the
space and are manipulated within it. Note this is about as general as a description can be;
there is no mention of components, nor the magnitude/direction that we might have come to
expect when we think of vectors. They are simply abstract objects. We tend to say vectors
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within the set are within the space itself, i.e. we don’t give the set and the space different
names.1 Simply put, vectors are the elements of the sets that form vector spaces. It is helpful
to think of such mathematical ‘spaces’ as sets with extra structure, in this case operations and
rules.

2. Addition Operation: this means there is some idea of adding two vectors within the space,
say a ∈ V and b ∈ V to produce a + b = c ∈ V . Crucially c is also a part of the space:
closedness.

3. Field of Scalars: see above for more information.

4. Scalar Multiplication Operation: there is an idea of combining an element of F with an
element of V to produce an element still within F (closedness, once again).

5. Rules: similarly to the field axioms, the two operations must satisfy a set of rules:

(a) Associativity: (a+ b) + c = a+ (b+ c)

(b) Commutativity: a+ b = b+ a

(c) Presence of additive identity: a+ 0 = a

(d) Presence of additive inverse: a+ (−a) = 0

(e) Presence of scalar multiplication identity: 1a = a

(f) Compatibility of scalar multiplication with field multiplication: p(qa) = (pq)a

(g) Distributivity: p(a+ b) = pa+ pb and (p+ q)a = pa+ qa

Again, note we can define the subtraction operation from the above, but all we need to define vector
spaces is addition and scalar multiplication.

1.2 Remarks

Claim 1. −(−v) = v

Proof.

−(−v) = −(−v) + 0

= −(−v) + [v+ (−v)]

= v+ [(−v) + (−(−v))]

= v+ 0

= v

Claim 2. 0v = 0

Proof.

0v = (a− a)v

= (av) + (−(av))

= 0

Claim 3. (−1)v = −v

Proof.

0 = (1 + (−1))v

0 = v+ (−1)v

−v = (−1)v

1This will become clearer when the concept of span is introduced. In brief, the space is ‘constructed’ by adding
and scaling vectors in the set so the set forms the ‘meat’ of the vector space.
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Claim 4. a0 = 0

Proof.

a0 = a(0v)

= (a · 0)v
= 0v

= 0

Claim 5. av = 0 =⇒ v = 0 | a ̸= 0

Proof.

Consider vector w s.t. w ̸= 0. Then we add aw to both sides:

av+ aw = aw

a(v+w) = aw

v+w = w

v = 0

Claim 6. All vector spaces contain 0

Proof. All vector spaces V are equipped with a field, say F . All fields contain 0 as they all have an
additive identity. Hence all vector spaces contain the vector 0v for some v ∈ V which we showed
equalled 0.

1.3 Sub Vector Spaces

1.3.1 Definitions

Consider a vector space V over a field F . Now consider a subset of that space2, W ⊆ V . If W
behaves as a vector space on its own when taken in combination with the aforementioned operations
and the same field as V , we say it’s a subspace of V . In other words, if W is a subset of V , is closed
under addition/scalar multiplication, and is over the same field as V then W is a subspace of V .

1.3.2 Checking a Subspace

The key idea here is that if a set behaves as its own vector space and is a subset of another vector
space then it’s a subspace. Assuming the set in question (say W ) is a subset of V , we need to think
about how to check if W behaves like a vector space. This means we need to check closedness under
the operations of V , namely addition and scalar multiplication. In theory, one should also check all
rules that these operations must follow, but in practice checking for the presence of a zero vector
suffices. In summary, to check if W is a subspace of V , check for the following:

1. Presence of 0

2. Closedness under vector addition

3. Closedness under scalar multiplication.

2To highlight the ambiguity here once more: ‘space’ is used as shorthand for the set of vectors that forms the
space. Again, see the section on span for further clarification
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1.4 Linear Combinations

1.4.1 Definitions

A linear combination of vectors is one which involves only addition and scalar multiplication. In
other words a general linear combination of vectors vi ∈ V would be

∑
i αivi for some αi ∈ F .

1.4.2 Linear Independence

Consider the following statement:∑
i

αivi = 0 =⇒ αi = 0 for all i. (1.1)

This says no matter how you try, there doesn’t exist a way to combine vectors vi linearly such that
the end result = 0; unless, of course, you scale them all down to zero and then add them up. If the
above statement holds, we describe the set of vectors as being linearly independent.

Claim 7. A set S is linearly dependent ⇐⇒ vj ∈ S can be written as a linear combination of the
other elements.

Proof.

(⇒)

∑
i αivi = 0 has a solution that has at least one αi ̸= 0, say for example αj .∑

i

αivi = 0

αjvj +
∑
i ̸=j

αivi = 0

vj =
∑
i ̸=j

−αi

αj
vi

Proof.

(⇐)

vj =
∑
i ̸=j

βivi

Now check linear independence:

0 =
∑
i

αivi

0 = αjvj +
∑
i ̸=j

αivi

0 = αj

∑
i̸=j

βivi +
∑
i̸=j

αivi

This has a solution when βi = αi and αj = −1. Hence the statement doesn’t imply αi = 0 for all
αi so the set is not linearly independent.
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1.4.3 Span

This is where the word ‘space’ in ‘vector space’ comes in. Span is defined as follows:

Span(S) :=

{∑
i

αivi | ∀αi ∈ F

}
(1.2)

if S is the set containing all vi. In other words, the set of all possible linear combinations of the set’s
elements. It is useful to think of this as some sort of ‘space’. Lets consider vectors in R3 to form a
geometrical interpretation of this. Start by considering the set of a single vector v. In this case, no
matter how you add and scale this vector, you’ll always end up somewhere along the same line, a
line that’s in the vector’s direction. Similarly, take the case you start with two vectors, v1 and v2.
If they’re linearly independent, then the only ‘space’ you can build with them is a plane. The first
one can be used to build an infinite line; if the second is linearly independent, then it will have some
component that points off the line. This, through scaling, can be used to build any vector within a
plane. With three linearly independent vectors you can build a 3 dimensional space.

Claim 8. Span(V ) forms a sub vector space of V

Proof.

The span contains 0 as the zero vector can be obtained from a linear combination of any vector,
namely by multiplying it by the scalar 0. This scalar is guaranteed by the field axioms to be within
F .

A vector in the span is a linear combination of the original vectors in V . Doing a linear combination
of vectors in the span, therefore, will just be another linear combination of the original vectors,
hence there is closedness under the relevant operations. Hence Span(V ) is a subspace of V .

1.4.4 Minimal Sets

Suppose we have a set S = {u,v,u+ v}. Clearly this set isn’t linearly independent. Its span is the
‘space3’ that can be built by combining its elements. Clearly, nowhere new can be reached by using
u+v alongside u and v alone - hence u+v can be removed from the set without changing the span.
The same applies to a set S′ = {v, αv}; αv can be removed without changing the space4 that can
be built from the set. We can therefore define a minimal set as the set in which all elements that
don’t change the span have been removed.

1.5 Basis and Dimension

1.5.1 Basis

Definition

A basis set is a minimal set that spans the space entirely. We have seen that Span(V ) is a subspace
of V ; if it is V itself, then we say the set spans the entire space. Hence, you can obtain a basis
for any vector space by removing vectors that don’t change the span from the set that forms the
space. A basis set is always linearly independent, as if it wasn’t there would be vectors that could
be removed without changing the span.
A general vector within a space can be written as a linear combination of the basis vectors - this is
because by definition they span the space. Say we have a basis set vi; we may write an arbitrary
vector v like so:

v =
∑
i

αivi

Which we say is relative to a set of coordinates, αi.

3I’m using inverted commas because vectors aren’t necessarily within actual space. For example, it’s possible to
construct vector spaces of matrices or of functions - clearly these don’t point anywhere in 3D space. This is an abstract
‘space’ - keep this in mind as I’ll drop the inverted commas from now on.

4More precisely, the dimension of the space. See the section on basis and dimension.

9



Claim 9. A vector within a space is associated with a unique set of coordinates with respect to a
particular basis set.

Proof.

Suppose coordinates are not unique, i.e. we may write v with respect to two sets of coordinates:

v =
∑
i

αivi =
∑
i

βivi∑
i

(αi − βi)vi = 0

As vi are linearly independent, the linear independence condition demands that αi − βi = 0 for all
i.

αi = βi

1.5.2 Dimension

Definition

The dimension of the space is the number of basis vectors required to span it. You may be familiar
with the i, j,k basis vectors in 3D space. There are three basis vectors and the space is of dimension 3.
There doesn’t have to be one basis for a particular space - as long as your set is linearly independent
and spans the space, it is one. This means there could be many different basis sets for a particular
space. There is no reason to think that different basis sets should have the same dimension - it is
reasonable to think that with respect to one basis one might need 3 vectors to span the space but
with respect to another it might be possible to find a more ‘efficient’ way of spanning it with only
2. Lets check this.

Claim 10. Dimension doesn’t depend on the basis chosen.

Proof.

Consider a basis set v1 . . .vn of V and a set of vectors w1 . . .wm s.t. wi ∈ V . We may write

w1 =

n∑
i=1

αivi

v1 =
1

α1

(
w1 −

n∑
i=2

αivi

)
Notice what we have done; we have written v1 as a linear combination of w1 and the other vi.
Consider Span({v1,v2 . . .vn}): if we were to replace v1 with our new expression in the span, the
only thing that would change would be v1 being exchanged5 for w1. This is because the span already
includes the other vi; they can be removed from the expression without changing the span, as the
linear combination

∑n
i=2 −

αi

α1
vi is already accounted for within the span by the other vi. We now

repeat the process, exchanging all v2 . . .vn with w2 . . .wn to give V = Span({w1 . . .wn}).

For m > n, wn+1 . . .wm are still vectors within V . Hence they must be spanned by {w1 . . .wn}
implying they are a linear combination of {w1 . . .wn} and thus the set {w1 . . .wm} is linearly
dependent.

In the case m < n, not all of the vi will be replaced by wi so it isn’t possible for wi to span the
space.

Now suppose wi . . .wm forms a basis for V . This immediately implies the m < n case is impossible,
as basis sets must span the whole space. Further, it implies the m > n case is impossible as we
showed that the set {w1 . . .wm} is linearly dependent, which basis sets cannot be. Hence the only
remaining possibility is m = n. We already know n is the dimension of another basis set and as
there has been no loss of generality, we have shown the dimension of all other basis sets must also
be n.
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Remarks

Claim 11. If dim(V ) = n then any linearly independent {v1 . . . vn} form a basis for V

Proof.

We take {v1 . . .vn} to be linearly independent and the dimension of V to be n. Assume the set
doesn’t span V and therefore doesn’t form a basis. Now suppose we complete the set to a basis with
{vn+1 . . .vm} to form a set that does in fact span V . This yields a contradiction as we know the
number of elements in a basis set must be n. Hence, the assumption is false and {v1 . . .vn} does
span V and is therefore a basis.

Claim 12. If W is a subspace of V and dim(W ) = dim(V ) then W = V .

Proof.

Let dim(W ) = dim(V ) = n. Hence it is possible to find a set of n linearly independent vectors
{v1 . . .vn} that form a basis for both sets. Spaces are built from the span of a set of vectors and
basis sets span the whole space. We may therefore write the statement V = Span({v1 . . .vn}) and
W = Span({v1 . . .vn}) so V =W .

11



Chapter 2

Linear Maps

2.1 Types and Properties of Linear Map

2.1.1 Definition

A linear map f : X → Y is a map that maps vectors in a vector space X (the domain) to vectors in
Y (the codomain) with the following linear properties:

f(u+ v) = f(u) + f(v) (2.1)

f(αv) = αf(v) (2.2)

Where α ∈ F , the field which X and Y are over.

2.1.2 Image and Kernel

Image

The image of a map, Im(f), is defined as follows:

Im(f) := {f(x) | x ∈ X} (2.3)

i.e. the set of all vectors f(x) that is produced when applying f to all vectors x ∈ X. It’s the
‘section’ of Y that can be reached by the action of f on any x. The dimension of the image space
is also known as the rank, or rk(f)

Kernel

The kernel of a map, ker(f), is defined as follows:

ker(f) := {x ∈ X | f(x) = 0} (2.4)

i.e. the set of vectors that map to the zero vector under the action of f .

Claim 13. Zero vectors map to zero vectors under linear maps

Proof.

f(0) = f(0v)

= 0f(v)

= 0

Hence 0 ∈ ker(f) for all linear f .
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It is clear that Im(f) and ker(f) are subsets of Y and X. But are they subspaces?

Claim 14. Im(f) is a subspace of Y

Proof.

We saw in Claim 13 that the zero vector maps to itself so clearly it’s part of the image. Now we
show closedness:

Let u,v ∈ X. Then αu + βv ∈ X as X is closed under addition and scalar multiplication by
definition. Let f(u), f(v) ∈ Im(f). Then:

αf(u) + βf(v) = f(αu+ βv)

which is clearly still within the image as it’s a vector obtained from the action of f on a vector
within X. Hence it’s a subspace of Y .

Claim 15. ker(f) is a subspace of X

Proof.

We saw in Claim 13 that the zero vector maps to itself so clearly it’s part of the kernel. Now we
show closedness:

Let u,v ∈ ker(X). Then f(u) = f(v) = 0 by definition. Then:

f(αu+ βv) = αf(u) + βf(v)

= α0+ β0

= 0

which means αu+βv ∈ kerf . Hence the kernel is closed under the relevant operations and thus it’s
a subspace of X.

2.1.3 Types of Map

Injective

Each element in Y is mapped to by at most one element in X.

Surjective

Each element in Y is mapped to by at least one element in X.

Bijective

Both injective and surjective. Each element in Y is mapped to by exactly one element in X.
It is also worth remembering that a linear and bijective map between two vector spaces is known as
a vector space isomorphism.

Claim 16. f surjective ⇐⇒ Im(f) = Y

13



Proof.

(⇒)

By definition there are no y ∈ Y that are not mapped to by at least one x ∈ X. The image therefore
clearly ‘covers’ the entire space.

Proof.

(⇐)

The entire space is mapped to by f . This means every element in Y is mapped to by at least one
element in X which is the definition of surjectivity.

Claim 17. Im(f) = Y ⇐⇒ dim(Im(f)) = dim(Y )

Proof.

(⇒)

If they are the same space then we can choose the same basis set for them - with the same number
of basis vectors and therefore the same dimension. I hate using the word obviously but in this case
I fear I have no choice.

Proof.

(⇐)

Im(f) is a subspace of Y . As proved in Claim 12, if they have the same dimension then they must
be the same space.

Claim 18. f injective ⇐⇒ ker(f) = {0}

Proof.

(⇒)

We showed in Claim 13 that the kernel always contains the zero vector. Hence the zero vector is
already mapped to by one vector - itself. This means no others can map to it (so the kernel has no
other elements) as by definition injective maps have each element in the codomain being mapped to
by at most one in the domain. There’s no room for anything else to map to 0.

14



Proof.

(⇐)

Suppose we have f(x1) = f(x2) | x1,x2 ∈ X. Then:

f(x1)− f(x2) = 0

f(x1 − x2) = 0

Which implies x1 −x2 is within ker(f). But it’s given that the kernel only contains the zero vector.
Therefore:

x1 − x2 = 0

x1 = x2

So we have f(x1) = f(x2) =⇒ x1 = x2, i.e. it isn’t possible for two different x ∈ X to map to the
same y ∈ Im(f); the xi must be the same. This is simply saying each element in Y is mapped to by
at most one element in X - the definition of injectivity.

And as a brief aside, the dimension of the space spanned by the zero vector alone is zero. This is
because the zero vector only spans itself, creating a space that can be reached by not going anywhere
(not using, scaling or adding any vectors), i.e. with zero basis vectors.

2.1.4 Inverse and Identity Maps

Identity Maps

An identity map is defined as IdX : X → X, i.e. a map from a space to itself such that IdX(x) = x.

Inverse Maps

The inverse map of f defined to be the map such that when composed onto f , the identity map is
produced. In other words:

f−1 : Y → X

such that

f−1 ◦ f = IdX

f ◦ f−1 = IdY

The distinction between identity maps is important. Say you start at X, apply f to get to Y and
then f−1 to get to X again. You have mapped from X to X which is then an identity map on X,
and vice versa if you start at Y and apply f−1 to get back to X, etc..

Claim 19. f−1 exists ⇐⇒ f is bijective

Proof.

(⇒)

Suppose we have f(x1) = f(x2) | x1,x2 ∈ X. Then:

f(x1) = f(x2)

f−1 ◦ f(x1) = f−1 ◦ f(x2)

x1 = x2
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Which implies injectivity as seen in Claim 18.

We now need to show that there exists an x that maps to each y. But if f−1 exists, we are guaranteed
to have y = f ◦ f−1(y), with f−1(y) being the relevant x ∈ X. In summary, for each y, we know
for sure that it’ll be mapped to by x = f−1(y). So f must be surjective. This means f is bijective,
as we already showed it was injective.

Proof.

(⇐)

Each y is mapped to by one x. All we have to do is define the map f−1 that takes us the other way:

f(x) = y ∈ Y

f−1(y) = x ∈ X

Which clearly satisfies the requirements for an inverse map as set out in this section - check it
yourself.

Claim 20. (f ◦ g)−1 = g−1 ◦ f−1

Proof.

(f ◦ g)−1 ◦ f ◦ g = Id

(f ◦ g)−1 ◦ f = g−1

(f ◦ g)−1 = g−1 ◦ f−1

2.2 Dimension Theorem

2.2.1 Proof

Claim 21. f : X → Y . f is linear. Let n = dim(X), k = dim(ker(f)), r = rk(f). Then r+ k = n.

Proof.

Let v1 . . .vk be a basis for ker(f). Now let’s complete the basis by adding vk+1 . . .vn linearly
independent vectors to form a basis for X. Remember, this can be done as we proved earlier the
kernel is a subspace of the domain.

The image of f is the set of vectors that can be reached by the action of f on vectors in X. Therefore,
for some vector w ∈ Im(f), we have

w = f

(
n∑

i=1

αivi

)

=

n∑
i=1

αif(vi)
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As f(v1) . . . f(vk) = 0 as v1 . . .vk ∈ ker(f), we can drop these from the sum:

w =

n∑
i=k+1

αif(vi)

So an arbitrary vector in the image can be reached byf(vk+1) . . . f(vn), which implies that that set
spans the image space.

Let’s now try and prove f(vk+1) . . . f(vn) is a linearly independent set, by contradiction. Assume a
solution to

n∑
i=k+1

αif(vi) = f

(
n∑

i=k+1

αivi

)
= 0

exists with αj ̸= 0 for some number (≥ 0) of j’s such that n ≥ j ≥ k + 1. The above expression
implies

n∑
i=k+1

αivi ∈ ker(f).

This is impossible as the basis for ker(f) is v1 . . .vk. As a result of the contradiction, αi = 0 for all
i - which is sufficient criteria to show linear independence.

So f(vk+1) . . . f(vn) is linearly independent and spans the image. Therefore, it forms a basis for the
image. We can find its dimension by counting the basis vectors - there’s n− k of them.

r = n− k

r + k = n

2.2.2 Consequences

An interesting observation regarding dimension and type of map can be made:

Claim 22. f bijective ⇒ dim(X) = dim(Y ).

Proof.

f bijective implies dim(ker(f)) = 0 which implies rk(f) = dim(X). Also, f bijective implies Im(f)
= Y . Clearly dim(X) = dim(Y ) follows.

2.3 Matrices

2.3.1 Coordinate Maps

Definition

A coordinate map ψ : Fn → X is a map from a set of n objects in the field F to a vector space X,
such that1 dim(X) = n. ψ acts on scalars to ‘build’ a vector within X, with respect to a particular
basis of X. This idea is a bit difficult to pin down with words. Essentially, we might write a vector
as v =

∑
i αivi. It is convenient, however, to represent the same vector as the more familiar column

vector:

( α1
α2

...

)
which is written with implied respect to the basis set vi.

1The fact the column vector and the vector space are the same dimension will be important in ensuring the map
is bijective, as you’ll see later.
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This representation makes it convenient to manipulate vectors symbolically, as we will see, with
matrices. In particular, Fn means the vector space formed by column vectors of size n with entries
all within the field F . The role of the coordinate map is to take a column vector, isolate the
coordinates from it and use them to build a vector with respect to a basis of X. For example, we

might have the vector
(

α1
α2
α3

)
with respect to a basis set vi. We then use the map ψ like so:

ψ

α1

α2

α3

 =

3∑
1

αivi

Again, the idea here is the coordinate map builds ‘actual’ vectors with respect to a basis from column
vectors.

Properties

Lets think about what type of map these maps are. First, we know from the definition (ψ : Fn → X)
that the basis vectors used in the ‘building’ process are ∈ X. Secondly, we know by definition that
the dimension of the column vector and the vector space ψ maps them to are the same. This implies
that in the general case, the image of ψ is a linear combination of n out of n basis vectors of X; this
means that the image covers the codomain X completely, as a general linear combination of all basis
vectors must span the space by the definition of a basis. Now, remembering claim 16, this is exactly
the condition for ψ to be surjective. Further, remembering claim 17, we know the dimension of the
image is equal to the dimension of the codomain, namely n. But n is the dimension of the domain
as well. Hence, by the dimension theorem, the dimension of the kernel is 0 and thus by claim 18 ψ
is injective. Therefore ψ is bijective, and thus invertible; there exists a map ψ−1 which takes you
from a vector to a column vector. This can also be seen intuitively from the fact that coordinates of
a vector are unique - there is only one actual vector corresponding to each column vector. Finally,
it’s left as an exercise to the reader to show that coordinate maps are linear2.

2.3.2 Why Matrices are Linear Maps

Say we have a map f : X → Y . We know the vector spaces X and Y have corresponding column
vector spaces, say of dimension n and m respectively. We like to work symbolically with column
vectors, so we’d like to find an object that represents the action of f on these column vectors. The
situation is as follows:

f
X −→ Y

φ ↑ ↑ ψ
Fn −→ Fm

A

So f takes us from X to Y , our coordinate maps φ and ψ take us from column vector spaces to actual
vector spaces and our mystery object, A, takes us between column vectors. By simply following the
diagram from the tail of A’s arrow to its tip, we can find an equivalent expression for A’s action:

A(α) = ψ−1 ◦ f ◦ φ(α)

Where α is the n-dimensional column vector we want f to act on. Now, let vi be a basis for X and
wi be a basis for Y . We can make the following observations:

A(α) = ψ−1 ◦ f

(
n∑

i=1

αivi

)

A(α) = ψ−1

(
n∑

i=1

αif(vi)

)
We know f(vi) ∈ Y so we may expand it in terms of Y ’s basis:

f(vi) =

m∑
j=1

βjiwj

2Sorry, I really couldn’t be bothered to add and format this in. It should be straightforward enough.
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Note that the iterated variable here is j, but β has an i subscript as it will depend on the choice
of vi. In other words the expansion of f(v1) will have different β coefficients than the expansion of
f(v2). Now, subbing in this in to our previous expression:

A(α) = ψ−1

 n∑
i=1

αi

m∑
j=1

βjiwj


Rearranging:

A(α) = ψ−1

 m∑
j=1

wj

n∑
i=1

αiβji


Now notice how

∑n
i=1 αiβji is just a scalar, lets call it γj .

A(α) = ψ−1

 m∑
j=1

γjwj


Now notice what we have - a linear combination of Y ’s basis vectors with a set of coordinates γj .
This is exactly the setup that ψ−1 can deconstruct into column vectors! Lets do that then:

A(α) =


γ1
γ2
...
γm

 =


∑n

i=1 αiβ1i∑n
i=1 αiβ2i

...∑n
i=1 αiβmi



A(α) =


α1β11
α1β21

...
α1βm1

+


α2β12
α2β22

...
α2βm2

+ · · ·+


αnβ1n
αnβ2n

...
αnβmn



A(α) = α1


β11
β21
...

βm1

+ α2


β12
β22
...

βm2

+ · · ·+ αn


β1n
β2n
...

βmn


Notice that the column vectors are simply those representing the image of the corresponding f(vi),
but in column vector form. Another way of writing this would be:

A(α) = α1β
1 + α2β

2 + · · ·+ αnβ
n

This is an incredibly useful result. It describes the procedure for symbolically carrying out the action
of a linear map on a column vector to produce another column vector. It says that the procedure is
to take the first coordinate of the input column vector and multiply by the image of the first domain
basis under the action of f .3 Then, repeat for the second and so on and add them all up. If you
haven’t seen this result before, try it out with a couple of 2x2 matrices and convince yourself this is
in fact equivalent to the traditional method of matrix-vector multiplication.
We would like to separate the α parts and the βi parts of our expression for A(α) as this will allow
us to extract the object that represents A. Lets group the βi column vectors together into a matrix,
and put α separately to the side:

A(α) =


β11 β12 . . . β1n

β21
. . .

...
...

βm1 . . . βmn



α1

α2

...
αn


3This image must be in coordinate vector form and with respect to the basis of the codomain.
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From this we can notice three things:

1. The object A is fully defined by the images of the codomain’s basis vectors. These are put in
column vector form and arranged into a matrix to give A.

2. An m×n matrix is a map from Fn → Fm. Hence an n×n matrix maps between two column
vector spaces of the same dimension.

3. For a matrix and column vector to be multiplicable, the number of columns of the matrix must
equal the number of rows of the vector. This ensures the vector is of the same dimension as
the domain of the matrix’s corresponding map.

Finally, in order to ensure we do the aforementioned coordinate multiplication with image vectors
and sum procedure, we will have to figure out some weird way of doing the symbolic application of
A to α. The method that follows this procedure is exactly the strange way we normally multiply
matrices and vectors.

2.3.3 Derivation of Matrix Multiplication Rules

We have seen that matrices represent linear maps between column vector spaces. Linear maps can
be composed, so we should now derive the relationship that allows two matrices to be composed, a
process we call matrix multiplication.
Consider a map g : Y → Z such that the following is satisfied:

g
Y −→ Z

ψ ↑ ↑ ω
Fm −→ F l

B

This implies we can make the map h : X → Z which satisfies h = g ◦ f . Also, if B is the matrix
representing the action of g on an m dimensional coordinate vector, then we can compose the
matrices to produce C(α) = BA(α). Here, C represents the action of h on an n dimensional column
vector to produce an l dimensional one. Notice how the matrices are composed in the same order
the maps are - right to left.
Lets go through the mildly tedious process of finding C. From the diagram we have

B(α) = ω−1 ◦ g ◦ ψ(α)

But we want B(A(α)) instead4, so we just replace:

B(A(α)) = ω−1 ◦ g ◦ ψ(A(α))

From our previous result we already know what A(α) is - we can just sub it in:

A(α) =

n∑
i=1

αiβ
i

B(A(α)) = ω−1 ◦ g ◦
n∑

i=1

αiψ(β
i)

Using the linearity of ψ. As βi is a column vector, and ψ is a coordinate map with respect to the
wi basis, ψ(β

i) will build a vector with coordinates that are the components of βi, namely βji:

B(A(α)) = ω−1 ◦ g ◦
n∑

i=1

αi

 m∑
j=1

βjiwj


4If this isn’t clear, think about how a composition is just applying one map after another; this is equivalent to

applying the second to the result, or output, of the first.
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And using the linearity of g:

B(A(α)) = ω−1

 n∑
i=1

αi

m∑
j=1

βjig(wj)


We can expand the image of the basis vectors g(wj) in the same manner as before:

g(wj) =

l∑
k=1

δkjzk

Again noting the two subscripts required for δ as it depends on the choice of wj that the image is
taken of. Here, zk are the basis vectors of the space Z. Substituting in:

B(A(α)) = ω−1

 n∑
i=1

αi

m∑
j=1

βji

l∑
k=1

δkjzk


Rearranging:

B(A(α)) = ω−1


l∑

k=1

zk

 n∑
i=1

m∑
j=1

αiβjiδkj


︸ ︷︷ ︸

εk


The object in square brackets is just a scalar varying with k, so we can call it εk. We have:

B(A(α)) = ω−1

(
l∑

k=1

εkzk

)

And as ω−1 ‘deconstructs’ vectors made of zk, we can easily see that this will produce

B(A(α)) =


ε1
ε2
...
εl

 =


∑n

i=1 αi

∑m
j=1 βjiδ1j∑n

i=1 αi

∑m
j=1 βjiδ2j
...∑n

i=1 αi

∑m
j=1 βjiδlj



B(A(α)) = α1


∑m

j=1 βj1δ1j∑m
j=1 βj1δ2j

...∑m
j=1 βj1δlj

+ α2


∑m

j=1 βj2δ1j∑m
j=1 βj2δ2j

...∑m
j=1 βj2δlj

+ · · ·+ αn


∑m

j=1 βjnδ1j∑m
j=1 βjnδ2j

...∑m
j=1 βjnδlj


We can see B(A(α)) is in the same form as A(α), so clearly the equivalent matrix C exists. As
before, we just have to separate off the αi and group the columns into a matrix:

B(A(α)) =


∑m

j=1 βj1δ1j
∑m

j=1 βj2δ1j . . .
∑m

j=1 βjnδ1j∑m
j=1 βj1δ2j

. . .
...

...∑m
j=1 βj1δlj . . .

∑m
j=1 βjnδlj



α1

α2

...
αn

 = C(α)
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From which we can easily see what the equivalent matrix C is.

We have arrived at the result:

(BA)pq = Cpq =

m∑
j=1

δpjβjq

But δpq are just the elements of the matrix representing g (namely B) and βpq are those of the
matrix representing f (namely A). Hence:

(BA)pq = Cpq =

m∑
j=1

BpjAjq

2.4 Change of Basis

2.4.1 Basis Translation Process

We have found an expression for a matrix that represents the action of a linear map on a coordinate
vector. Recall the relationships

f
X −→ Y

φ ↑ ↑ ψ
Fn −→ Fm

A

A = ψ−1 ◦ f ◦ φ

This matrix is linked to two basis sets: the first being the basis of X (lets call it xi) which φ is with
respect to and the second being the basis of Y (lets call it yi which ψ is with respect to. Suppose we
wanted to replace these basis sets with x′

i and y′
i respectively, and find the equivalent matrix with

respect to these new basis sets. Our new relationship would be

A′ = (ψ′)−1 ◦ f ◦ φ′

We can add in some strategically placed identity maps that won’t change the overall expression:

A′ = (ψ′)−1 ◦ (ψ ◦ ψ−1) ◦ f ◦ (φ︸ ︷︷ ︸
A

◦φ−1) ◦ φ′

A′ = (ψ′)−1 ◦ ψ ◦A ◦ φ−1 ◦ φ′

Now let’s think about what happens when we give A′ an input coordinate vector with respect to x′
i,

say α′:

1. φ′ builds a vector with respect to x′
i

2. φ−1 deconstructs the vector into a coordinate vector with respect to xi, which is a form that
A can understand

3. A acts on this coordinate vector to produce a coordinate vector with respect to yi

4. ψ constructs a vector with respect to yi

5. ψ−1 deconstructs this into a coordinate vector with respect to y′
i

So whereas before we had xi in, yi out, we now have x′
i in and y′

i out through a rather complicated
translation process.
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2.4.2 Priming and Unpriming Matrices

Lets consider the composition (ψ′)−1 ◦ ψ. This is a map pY : Fm → Fm and so has an equivalent
matrix, which we will call PY . Lets look at what PY actually does; first it takes in a coordinate
vector with respect to yi and then does some constructing and deconstructing with the end result
of outputting a coordinate vector with respect to y′

i. Therefore, we call PY a priming matrix as it
converts a coordinate vector with respect to an unprimed basis into one with respect to a primed
basis. In particular, the Y subscript indicates it’s a priming matrix for the vector space Y , given a
set of primed and unprimed basis sets.

We would like to show that this map is bijective and thus has an inverse. It is impossible for
pY to map different unprimed coordinate vectors to the same primed one as that would imply dif-
ferent vectors in one basis were the same vector in the other - this is clearly impossible as vectors
exist independently of basis, they can simply be described relative to one. Further, it isn’t possible
for an unprimed coordinate vector to not have an equivalent primed coordinate vector as this would
imply the primed basis didn’t span the space. This is impossible by the definition of basis. Hence,
priming maps must have a 1:1 correspondence between primed and unprimed coordinate vectors and
are therefore bijective. As we showed earlier, all bijective maps are invertible.
Notice that φ−1 ◦ φ′ = ((φ′)−1 ◦ φ)−1. This is in the form of the inverse of a priming map, so it
must be a map that unprimes coordinate vectors. We can call its inverse map pX : Fn → Fn with
equivalent matrix PX . Again, notice the X subscript: given a primed set and an unprimed set of
basis vectors of X, PX converts between them. Overall then, we can write A′ in matrix form:

A′ = PYAP
−1
X (2.5)

Clearly then, the process of changing the basis a matrix is with respect to is a case of finding PX

and PY , and then simply substituting in.
It would also be convenient to know how to explicitly find priming matrices. It happens that in most
cases, one tends to find the unpriming matrices and then invert them. Suppose we have a primed
basis x′

i and an unprimed one xi. Suppose further we are given that

x′
i =

∑
j

αjixj

i.e. we are give the coordinates of the primed set with respect to the unprimed set. Now lets see
what we would get if we arranged these coordinates into a matrix:α11 . . . α1n

...
. . .

...
αn1 . . . αnn


We already know the columns of the matrix are the images of the basis vectors. But the ith column
is precisely the column vector of x′

i with respect to xi. If we give this matrix ei as an input - which
can be interpreted as the representation of the ith primed basis vector with respect to its own basis
set - it gives back the representation of the ith primed basis vector with respect to the unprimed
set. Hence, this matrix is an unpriming matrix. This is a bit tricky to wrap your head around, so
the following example should hopefully clear it up.

2.4.3 Example

Suppose we have two vector spaces X and Y , of dimension 3 and 2 respectively. X has an unprimed
basis set xi and primed set

x′
1 =

2
0
1

 x′
2 =

 1
1
−1

 x′
3 =

0
2
3


with respect to xi. Just to be crystal clear, this means x′

1 = 2x1 + 0x2 + 1x3. Also, Y has an
unprimed basis set of yi and primed set

y′
1 =

(
3
2

)
y′
2 =

(
0
−1

)
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with respect to yi.
Suppose we have a map a : X → Y with an equivalent matrix mapping between F 3 and F 2:

A =

(
1 3 −2
4 0 1

)
.

If you read the section on matrices as linear maps, you should know that the numbers in the matrix
are with respect to the basis yi. We would like to find, however, this matrix with respect to the
primed basis sets. In other words, the matrix that takes in coordinate vectors that are with respect
to x′

i and yields coordinate vectors with respect to y′
i.

Using Priming Matrices

Let’s look at the statement x′
1 =

(
2
0
1

)
. Notice x′

1 =
(

1
0
0

)
with respect to the primed basis set, so

some map exists that takes in
(

1
0
0

)
with respect to the primed set of X and yields

(
2
0
1

)
with respect

to the unprimed set. This map is therefore the unpriming map of X, namely p−1
X .

Recall that the columns of a matrix are simply the coordinate vectors of the images of the domain’s
basis set, with respect to the codomain’s basis set. Of course, this still applies to priming matrices

and thus, as the basis of the domain of P−1
X is the primed set, and

(
2
0
1

)
is the image of the first

basis vector in said domain5 then this must form the first column of P−1
X . Repeating this for the

other columns yields

P−1
X =

2 1 0
0 1 2
1 −1 3


Similarly for the yi set, we have

P−1
Y =

(
3 0
2 −1

)
We’ll cover how to find matrix inverses later, but for now just trust me that

PY =

(
1 0
2 −3

)
Now all that’s left is to substitute into equation 2.5, yielding

A′ =

(
0 2 0
−9 1 −3

)

Without Priming Matrices

It is possible to do the ‘translation’ work of the priming and unpriming matrices ourselves, and
therefore find A′ without explicitly calculating them. Recall again that the columns of A′ will be
the images of the primed X basis vectors. We can find these images by translating the primed basis
vectors to be with respect to the unprimed ones, using A to find their images and then translating
back.
No actual work needs to be done translating the primed X vectors in to the primed ones: they’re
already written with respect to the unprimed ones. So now we just operate on them with A:

Ax′
1 =

(
0
9

)
Ax′

2 =

(
6
3

)
Ax′

3 =

(
0
3

)
5I.e. the first primed basis vector in X
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Which are with respect to yi. Hence, all we have to do is convert these into y′
i and we’re done.(

0
9

)
= ay1 + by2(

0
9

)
=

(
3a

2a− b

)
Which implies a = 0 and b = −9. This means Ax1 =

(
0
−9

)
with respect to y′

i. Repeating for the
other basis vectors and then arranging the results into columns:

A′ =

(
0 2 0
−9 1 −3

)
Which is the result we arrived at earlier.
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Chapter 3

Scalar Products

3.1 Properties

3.1.1 Definition

The hermitian scalar product ⟨·, ·⟩ : V × V → C is a map from two vectors within a vector space V
to the complex numbers. The map must satisfy the following properties:

1. ⟨v,w⟩ = ⟨w,v⟩∗ (take conjugate when swapping arguments)

2. ⟨u, αv+ βw⟩ = α⟨u,v⟩+ β⟨u,w⟩ (linear in second argument)

3. ⟨v,v⟩ > 0 if v ̸= 0 (positive definite)

Regarding the third point, if one of the vectors within a scalar product is zero we may take out a
scalar of 0 due to linearity making the whole thing zero.

3.1.2 Magnitude of a Vector

We can define the magnitude of a vector |v| :=
√

⟨v,v⟩.

Claim 23. |a| is a purely real quantity.

Proof.

|a|2 = ⟨a,a⟩

Clearly ⟨a,a⟩ = ⟨a,a⟩∗ from the conjugate flip property, so |a|2 is a purely real quantity. Suppose,
in the general case, |a| = α+ βi | α, β ∈ R:

|a|2 = α2 + 2αβi− β2 ∈ R

Which implies either α = 0 or β = 0. Consider the former:

|a|2 = −β2 < 0

which is impossible by the positive definite property. Hence, β = 0 so |a| ∈ R.

3.1.3 Function Application Uniqueness

Consider linear maps f : X → X and g : X → X with v,w ∈ X.

Claim 24. ⟨v, f(w)⟩ = ⟨v, g(w)⟩ =⇒ f = g
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Proof.

⟨v, f(w)⟩ − ⟨v, g(w)⟩ = 0

⟨v, f(w)− g(w)⟩ = 0

As this must hold for all cases, including the ones where v ̸= 0, then f(w) = g(w). Since this must
hold for all w, then f = g.

Claim 25. ⟨f(v),w⟩ = ⟨g(v),w⟩ =⇒ f = g

Proof.

⟨w, f(v⟩∗ = ⟨w, g(v⟩∗

(⟨w, f(v⟩ − ⟨w, g(v⟩)∗ = 0

⟨f(v)− g(v),w⟩∗ = 0

⟨w, f(v)− g(v)⟩ = 0

As this must hold for all cases, including the ones where w ̸= 0, then f(v) = g(v). Since this must
hold for all v, then f = g.

3.1.4 Cauchy-Schwarz Inequality

Claim 26. |⟨x,y⟩| ≤ |x||y|

Proof.

Consider ⟨x+ ty,x+ ty⟩ with t ∈ C.

0 ≤ ⟨x+ ty,x+ ty⟩
= ⟨x+ ty,x⟩+ ⟨x+ ty, ty⟩
= ⟨x,x+ ty⟩∗ + ⟨ty,x+ ty⟩∗

= ⟨x,x⟩+ (t⟨x,y⟩)∗ + t⟨x,y⟩+ |t|2⟨y,y⟩
= ⟨x,x⟩+ |t|2⟨y,y⟩+ 2Re(t⟨x,y⟩)

Now choose t = − ⟨x,y⟩∗
⟨y,y⟩

= |x|2 + |⟨x,y⟩|2

⟨y,y⟩
− 2

|⟨x,y⟩|2

⟨y,y⟩

= |x|2 − |⟨x,y⟩|2

|y|2
≥ 0

|x|2|y|2 ≥ |⟨x,y⟩|2

|⟨x,y⟩| ≤ |x||y|

3.1.5 Triangle Inequality

Claim 27. |a+ b| ≤ |a|+ |b|
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Proof.

|a+ b|2 = ⟨a+ b,a+ b⟩
= |a|2 + |b|2 + (⟨a,b⟩+ ⟨a,b⟩∗)
= |a|2 + |b|2 + 2Re(⟨a,b⟩)

|a+ b|2 − |a|2 − |b|2 ≤ 2|⟨a,b⟩| ≤ 2|a||b| (using Cauchy-Schwarz)

|a+ b|2 ≤ (|a|+ |b|)2

|a+ b| ≤ |a|+ |b|

3.1.6 Angles Between Vectors

The Cauchy-Schwarz inequality allows us to define the extent to which one side is less than the other
by defining the angle θ between two vectors such that

cos θ :=
⟨x,y⟩
|x||y|

(3.1)

which is valid when ⟨x,y⟩ is a real number. This yields the interpretation of the real scalar product
being the magnitude of the projection of one vector in the direction of the other.

3.1.7 Orthogonality

We say two vectors are orthogonal if their scalar product is zero. This has the consequence of
mandating orthogonal and non-zero vectors to be linearly independent.

Claim 28. Consider a set of vectors S such that ⟨vi, vj⟩ = 0 (vi, vj ∈ S, vi ̸= 0) for all i, i.e.
all vectors in S are pairwise orthogonal and non-zero. Then all vectors in the set are linearly
independent.

Proof.

Linear independence condition: ∑
i

αivi = 0

Take scalar product of both sides: 〈
vj ,
∑
i

αivi

〉
= 0∑

i

αi⟨vj ,vi⟩ = 0

The left side is zero for all combinations except j with itself due to pairwise orthogonality. Hence
we have

αj⟨vj ,vj⟩ = 0

And due to the positive definite property ⟨vj ,vj⟩ > 0 so αj must =0. As we never specified vj apart
from it being within S, αj = 0 for all j. Hence they are linearly independent.
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3.2 Orthonormal Basis Sets

3.2.1 Definition

In this section we will make use of the Kronecker Delta symbol, δ. This will be defined in section
6.1.1; skip ahead to there and then come back if you aren’t already familiar with it.
A set of vectors εi is said to be orthonormal if ⟨εi, εj⟩ = δij . Therefore, they are all mutually
orthogonal and normalised.

3.2.2 Gram-Schmidt Procedure

This is the procedure for creating an orthonormal basis set from an arbitrary basis set of vectors vi.

Begin with v1. Normalise to produce ε1:

ε1 =
v1

|v1|

Now take v2. We subtract off all components in the direction of ε1 to ensure orthogonality:

v′
2 = v2 − ⟨ε1,v2⟩ε1

The scalar product extracts the magnitude of these components and the normalised factor of ε1
gives the components in the relevant direction. Now normalise:

ε2 =
v′
2

|v′
2|

and repeat for the rest of the vectors in the set. For the ith vector, subtract off all the components
in the directions of ε1 . . . εi−1, and then normalise.

Notice that Span({vi}) = Span({εi}). Clearly Span(v1) = Span(ε1) as they differ by a rescaling.
Also, notice Span({v1,v2}) = Span({ε1, ε2}) as , ε2 differs from v2 by a scale factor and a linear
combination of ε1, which we agreed was already in the span and thus doesn’t affect it. The same
observation can be repeated for ε3 and so on, such that Span({vi}) = Span({εi}). As {vi} was
defined to be a basis set and has the same span as {εi}, then the latter is also a basis set.
Thanks to the Gram-Schmidt Procedure we are able to write any vector with respect to an orthonor-
mal basis set, which has many useful consequences.

3.2.3 Finding Coordinates

Lets write a vector v in terms of an orthonormal basis set:

v =
∑
i

αiεi

and take the scalar product with another basis vector within the basis set:

⟨εj ,v⟩ =

〈
εj ,
∑
i

αiεi

〉
=
∑
i

αi⟨εj , εi⟩

=
∑
i

αiδij

= αj

So we have extracted the jth coordinate by taking a scalar product with the jth basis vector in the
orthonormal set.
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3.2.4 Computation of the Scalar Product

Once again, writing vectors with respect to an orthonormal basis has useful consequences - we can
find how to actually compute the scalar product of two vectors.

Let v =
∑

i αiεi,w =
∑

i βiεi. Then:

⟨v,w⟩ =

〈∑
i

αiεi,
∑
j

βjεj

〉

=
∑
j

βj

〈∑
i

αiεi, εj

〉
=
∑
i

∑
j

α∗
i βj⟨εi, εj⟩

=
∑
i

∑
j

α∗
i βjδij

=
∑
i

α∗
i βi

3.2.5 Finding Matrix Elements

Consider a linear map f : V → V with an equivalent matrix A with entris with respect to an
orthonormal basis εi of V . We know the columns of A are the images of εi under the action of f ,
which allows us to write

f(εj) =
∑
i

Aijεi

Taking scalar products of both sides:

⟨εk, f(εj)⟩ =

〈
εk,
∑
i

Aijεi

〉
=
∑
i

Aijδki

= Akj

3.3 Orthogonal Complement

3.3.1 Definition

Consider a space V with subspace W . We define the orthogonal complement to W as follows:

W⊥ := {v ∈ V | ⟨w,v⟩ = 0 ∀w ∈W} (3.2)

Which in words means the set of vectors in V that are orthogonal to all vectors in the subspace W .

3.3.2 Properties

Claim 29. W⊥ is a subspace of V

Proof.

By definition W⊥ ⊂ V . Now we check presence of the zero vector and closedness:

⟨w,0⟩ = 0

So 0 ∈W⊥. Now let x,y ∈W⊥

⟨w, αx+ βy⟩ = α⟨w,x⟩+ β⟨w,y⟩ = 0
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Claim 30. W ∩W⊥ = {0}

Proof. Let x ∈ W ∩W⊥. ⟨w,x⟩ = 0 holds for all w ∈ W including x, so ⟨x,x⟩ = 0 which has the
only solution x = 0.

Claim 31. W ∪W⊥ = V and hence dim(W )+dim(W⊥) = dim(V ).

Proof.

Let w1 . . .wr form an orthonormal basis forW so dim(W ) = r. Now complete this with wr+1 . . .wn

so dim(V ) = n with wi being an orthonormal basis for V . Consider u ∈ W⊥. As W⊥ ⊂ V we
may write u =

∑n
i=1 αiwi. Now we’ll use the scalar product to find the coordinates. For some

j = 1 . . . r :

⟨wj ,u⟩ =

〈
wj ,

n∑
i=1

αiwi

〉

=

n∑
i=1

αi⟨wj ,wi⟩

= αj = 0

As all vectors in W⊥ are orthogonal to all in W and wj ∈W . Hence we can drop the basis vectors
w1 . . .wr:

u =

n∑
i=r+1

αiwi

And as u is an arbitrary vector in W⊥, wr+1 . . .wn span W⊥. As they are all mutually orthogonal
they are linearly independent and thus wr+1 . . .wn forms a basis for W⊥. Taking both the basis
sets for W and W⊥ together yields the basis set for V , so W ∪W⊥ = V . Also, by counting vectors
in each basis set we arrive at dim(W )+dim(W⊥) = dim(V ).

3.4 Adjoint Maps

3.4.1 Definition

For a map f : V → V , the adjoint map f† : V → V satisfies the following property for v,w ∈ V :

⟨v, f(w)⟩ = ⟨f†(v),w⟩. (3.3)

Properties

Claim 32. f† is unique.

Proof.

Suppose for w ̸= 0

⟨f†(v),w⟩ = ⟨g†(v),w⟩
(⟨w, f†(v)⟩ − ⟨w, g†(v)⟩)∗ = 0

⟨w, f†(v)− g†(v)⟩∗ = 0

As w ̸= 0 we have f†(v)− g†(v) = 0 from which the claim follows.
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Claim 33. (f†)† = f

Proof.

⟨v, f(w)⟩ = ⟨f†(v),w⟩ = ⟨v, (f†)†(w)⟩

And due to the previously proved uniqueness of functions applied within the scalar product, the
claim holds.

Claim 34. (f + g)† = f† + g†

Proof.

⟨v, (f + g)(w)⟩ = ⟨v, f(w)⟩+ ⟨v, g(w)⟩
= ⟨f†(v),w⟩+ ⟨g†(v),w⟩
= ⟨w, f†(v)⟩∗ + ⟨w, g†(v)⟩∗

= ⟨f†(v) + g†(v),w⟩ = ⟨(f† + g†)(v),w⟩

But ⟨v, (f + g)(w)⟩ also equals ⟨(f + g)†v,w)⟩ so again by uniqueness the claim is proved.

Claim 35. (αf)† = α∗f†

Proof.

⟨(αf)†(v),w⟩ = ⟨v, αf(w)⟩ (3.4)

= α⟨v, f(w)⟩ (3.5)

= α⟨f†(v),w⟩ (3.6)

= ⟨α∗f†(v),w⟩ (3.7)

And again by uniqueness the claim is proved.

(3.8)

Claim 36. (f ◦ g)† = g† ◦ f†

Proof.

⟨(f ◦ g)†(v),w⟩ = ⟨v, (f ◦ g)(w)⟩
= ⟨f†(v), g(w)

= ⟨g† ◦ f†(v,w)⟩

And again by uniqueness the claim is proved.

Claim 37. (f−1)† = (f†)−1

Proof.

Clearly Id† = Id. So:

Id† = Id

(f−1 ◦ f)† = Id

f† ◦ (f−1)† = Id

(f−1)† = (f†)−1
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3.4.2 Hermitian Matrices

It would be useful to find an expression for the elements of the matrix corresponding to the adjoint
of a particular map. Let A represent f : V → V and B represent f†. We have the elements of A
and B:

Aij = ⟨εi, f(εj)
Bij = ⟨εi, f†(εj)

= ⟨f(εi), εj⟩
= ⟨εi, f(εj)⟩∗

= A∗
ji

So B is the conjugate transpose of A.

3.5 More Types of Map

3.5.1 Self-Adjoint (Hermitian)

Defined by f = f†. We have:

⟨v, f(w)⟩ = ⟨f(v),w⟩ = ⟨w, f(v)⟩∗

3.5.2 Unitary

Unitary maps preserve scalar products. For a unitary map f : V → V :

⟨f(v), f(w)⟩ = ⟨v,w⟩ (3.9)

Claim 38. Unitary maps leave magnitudes unchanged.

Proof.

|f(v)| =
√
⟨f(v), f(v)⟩

=
√
⟨v,v⟩

= |v|

Claim 39. Unitary maps leave angles unchanged.

Proof.

Let θ(u,v) be the angle between u and v:

θ(u,v) = cos−1

(
⟨u,v⟩
|u||v|

)
By the previous claim, magnitudes are unchanged by unitary maps:

θ(u,v) = cos−1

(
⟨f(u), f(v)⟩
|f(u)||f(v)|

)
= θ(f(u), f(v))

Claim 40. Unitary maps are defined by f† ◦ f = Id
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Proof.

⟨u,v⟩ = ⟨f(u), f(v)⟩
= ⟨u, f† ◦ f(v)⟩

And by function application uniqueness, f† ◦ f(v) = v. Also, this implies f−1 = f†.

Claim 41. f† is unitary if f is unitary.

Proof.

Let v′ = f(v) and w′ = f(w).

⟨v′,w′⟩ = ⟨v,w⟩
= ⟨f−1(v′), f−1(w′)⟩

3.6 Dual Vector Spaces

3.6.1 Definition

It is not difficult to show that the set of all linear maps between two vector spaces forms a vector
space itself. The dual vector space V ∗ of a vector space V over a field F is defined as the set of all
linear maps φ : V → F . In other words, the set of linear maps that when applied to elements of V
yield elements in F , if we consider F to be a one-dimensional vector space. The elements of V ∗ are
called linear functionals.

Zero Functional

The zero functional is the element of V ∗ that doesn’t change a functional when it is added to said
functional. In other words, φ + φ0 = φ. As these are maps, we can apply them to an arbitrary
vector v ∈ V , such that:

(φ+ φ0)(v) = φ(v)

φ(v) + φ0(v) = φ(v)

φ0(v) = 0

As φ(v) is a scalar, we can subtract it off both sides and know what we’re getting. So the zero
functional is the functional which maps to the scalar 0.

3.6.2 Dual Basis

Claim 42. For a basis v1 . . . vn of V there exists a dual basis d1 . . . dn of V ∗ such that di(vj) = δij.

Proof.

As always, we must check this supposed basis set is linearly independent and spans V ∗. Beginning
with the former: ∑

i

αidi = φ0
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where φ0 is the zero functional. We can apply both sides to vj which should yield the same result:∑
i

αidi(vj) = φ0(vj)∑
i

αidi(vj) = 0∑
i

αiδij = 0

αj = 0

So as j = 1 . . . n and is arbitrary, we have satisfied the condition for linear independence. Now
we need to show that the dual basis spans V ∗. In other words, we need to show for an arbitrary
functional φ ∈ V ∗ we have φ =

∑
i αidi.

Let us, as an aside, suppose this is true. This will let us find out what αi should be, and then let us
make a guess at the form of φ. We would have

φ(vj) =
∑
i

αidi(vj)

φ(vj) = αj

So suppose we have a functional ϕ =
∑

i φ(vi)di. We now need to show ϕ = φ. This can be done
by showing that, for an arbitrary vector v ∈ V , ϕ(v) = φ(v). But as v can be expanded as a linear
combination of basis vectors of V :

ϕ(v) = φ(v)

ϕ

(∑
i

βivi

)
= φ

(∑
i

βivi

)
∑
i

βiϕ(vi) =
∑
i

βiφ(vi)

So it is sufficient to show that ϕ(vi) = φ(vi) for all basis vectors vi within V ’s basis set. Lets find
ϕ(vi):

ϕ(vj) =
∑
i

φ(vi)di(vj)

=
∑
i

φ(vi)δij

= φ(vj)

Hence we have ϕ = φ =
∑

i φ(vi)di and thus the proposed dual basis does indeed span V ∗ as
an arbitrary functional can be written as a linear combination of elements of the dual basis set.
Therefore, the proposed dual basis is a basis for V ∗ as it satisfies both criteria for a basis set.

In physics literature an alternative notation is used. See the section on dual spaces in Andre Lukas’
notes for a full explanation. For the purposes of the first year linear algebra course, it is more
helpful to understand this concept with notation we have already become comfortable with and
then introduce new notation when it is needed in future years.

3.6.3 Application to Bilinear Forms

Non-Degenerate Symmetric Bilinear Forms

We say a symmetric bilinear form ⟨·, ·⟩ on a real vector space V is non-degenerate if ⟨v,w⟩ = 0 for all
w ∈ V implies v = 0. In other words, there are no vectors that are orthogonal to all other vectors
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with respect to the orthogonality defined by the bilinear form in question. To form an intuitive
picture, consider V = R3 and take the bilinear form to be the real scalar product. Clearly it is not
possible to find a vector v within this space perpendicular to all others as one could always scale v
to v′ = αv which would not be perpendicular to v. Hence, the real scalar product is non-degenerate.

Claim 43. Suppose we have a real vector space V equipped with a symmetric bilinear form D ⟨·, ·⟩. If
we define the maps D1, D2 : V → V ∗ with D1(v) = ⟨v, ·⟩, D2(v) = ⟨·, v⟩, we have D non degenerate
⇐⇒ D1 and D2 are isomorphisms.

Proof.

(⇒)

⟨·, ·⟩ is bilinear, i.e. linear in each argument so D1 and D2 are linear. Therefore, we just need to
show they are bijective. Firstly, by definition ker(D1) = {v ∈ V | ⟨v, ·⟩ = φ0}. For a particular
choice of v, say x ∈ ker(D1), we have D1(x) = φ0 and therefore

D1(x)(y) = φ0(y)

for some arbitrary y ∈ V . By the definition of the zero functional, we have

D1(x)(y) = 0.

But by the non-degeneracy condition we have that this imples x = 0 as y was arbitrary. This means
that the kernel can only contain 0. We have seen that this implies injectivity by claim 18. As a
further consequence, dim(ker(D1)) = 0, and thus by the dimension theorem dim(Im(D1)) = dim(V ),
which implies surjectivity by claim 16. Hence, D1 is bijective. Almost identical arguments can be
applied to D2 to show that it is also bijective.

(⇐)

We have D1 is bijective. Hence, it is injective, and ker(D1) = {0}. Hence, if we have

D1(x) = φ0 =⇒ x = {0}

By the definition of the kernel. Suppose the equality holds, and thus x = 0. We can apply both
sides to an arbitrary y ∈ V :

D1(x)(y) = φ0(y)

⟨x,y⟩ = 0

Which still implies x = 0 as we’ve done the same operation to both sides. This is the very definition
of non-degeneracy as y is arbitrary so it must hold for all y ∈ V .
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Chapter 4

Matrices

4.1 Unitary Matrices

4.1.1 Properties

Claim 44. Unitary matrices have orthonormal columns.

Proof.

Consider a unitary matrix written with respect to an orthonormal basis εi. Recall we can define
unitary maps by f† ◦f = Id. If we use the matrix A to represent the map f , we have f† = A† where
the dagger represents taking the Hermitian conjugate of the matrix, i.e. the conjugate transpose.
Hence:

A†A = I∑
k

(A†)ikAkj = δij∑
k

(A∗)kiAkj = δij

⟨Ai,Aj⟩ = δij

by the definition of the scalar product of vectors with respect to an orthonormal basis. Here, I is
the identity matrix and Ai is the ith column of the matrix A taken as a column vector.

4.2 Rank

4.2.1 Definition

Rank was previously defined as the dimension of the image of a map. Further, we showed that the
columns of a matrix are the images of the domain’s basis vectors. Also, we can show that these
columns span Im(f). Considering an arbitrary vector in Im(f) to be f(w), where w is some vector
within the domain with basis vectors vi.

f(w) = f(
∑
i

αivi)

=
∑
i

αif(vi)

So clearly an arbitrary vector in the image can be reached by linear combinations of the images of the
basis vectors - but these are precisely the matrix columns. Hence, linearly independent columns form
a basis for the image of a matrix. As rank is the dimension of the image, and linearly independent
matrix columns form a basis for the image, we just need to count the number of linearly independent
columns to find the rank.
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4.2.2 Row Rank = Column Rank

It can be proved that the row rank, i.e. the number of linearly independent row vectors in a matrix,
is equal to column rank, which is the ‘traditional’ rank - number of linearly independent column
vectors.

Claim 45. Row rank = column rank

Proof.

Take an arbitrary mxn matrix A with a column rank c. Hence, there are c linearly independent
columns. Let it have a row rank r. Define the intersection matrix B such that each element of B
is both in a linearly independent row and column of B. To be more specific, define the following
ordered sets:

C = {column numbers of the linearly independent columns of A, ascending order}
R = {row numbers of the linearly independent rows of A, ascending order}

And let the ith element of C or R be Ci,Ri respectively. For example, consider the following example
where membership of the set of linearly independent rows/columns is denoted by ✓\×

✓ × ✓ ✓

✓
×
✓

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34


Which would yield the following matrix for B:

B =

(
A11 A13 A14

A31 A33 A34

)
Now as shown before, matrices are maps between column vector spaces. Suppose, we use B to
represent a map b : X → Y . In this case, B is an r× c matrix which corresponds to a map from F c

to F r where F is the field of the underlying vector spaces. We can see a few consequences:

1. It’s a requirement of the coordinate maps associated with matrices that the dimension of the
domain column vector space and domain (actual) vector space are the same, and likewise for
the codomain. This tells us dim(X) = c and dim(Y ) = r.

2. By constructing B as we did we guaranteed that all rows and columns were linearly indepen-
dent. Hence, dim(Im(g)) = c as there are c linearly independent columns

3. From the dimension theorem we can easily show dim(ker(g)) = 0 and therefore ker(g) = {0}.

4. As Im(g) is a subspace of Y we have c ≤ r

We would like to show dim(Im(g)) = dim(Y ). We can use claim 31 which specifies the relationships
of the orthogonal complement of a subspace with the whole space. We have also shown that the
image of a matrix is the span of its columns. We can therefore ask the question “are there any
vectors within Y that are orthogonal to all vectors in Im(g)?” Suppose there is one, say y ∈ Y .

⟨y,p⟩ = 0

for an arbitrary p ∈ Im(g). As shown before the columns of B will span the image, so we can find
an expression for p:

p =

c∑
j=1

γjB
j
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Suppose without loss of generality A, and therefore B, are written with respect to an orthonormal
basis of Y w1 . . .wr.

Bj =

r∑
k=1

Bkjwk

p =

c∑
j=1

r∑
k=1

γjBkjwk

y =

r∑
i=1

αiwi

Using our aforementioned orthogonality statement:

0 =

〈
r∑

i=1

αiwi,

c∑
j=1

r∑
k=1

γjBkjwk

〉

0 =

r∑
i=1

c∑
j=1

r∑
k=1

α∗
i γjBkj⟨wi,wk⟩

0 =

r∑
i=1

c∑
j=1

r∑
k=1

α∗
i γjBkjδik

0 =

r∑
i=1

c∑
j=1

α∗
i γjBij

0 =

r∑
i=1

α∗
i

 c∑
j=1

γjBij


0 =

r∑
i=1

α∗
i (B(γ))i

Now notice B(γ), the column vector with entries that are the arbitrary coefficients of p with respect
to B’s columns, is never 0. This is because if it was, γ would be in the kernel of g, but we showed
that the kernel only contains the zero vector. Therefore, as γ is arbitrary, α∗

i is 0 for all i, which
implies α = 0 and thus that y = 0. Hence, the only vector orthogonal to the whole image is the
zero vector, so from claim 31 we have dim(Im(g)) = dim(Y ). In other words, c = r.

4.3 Elementary Operations

There are a number of operations we can do to matrices that leave ranks unchanged. Note that they
apply equally to rows, but columns are used in this example. These are:

1. Swap two columns

2. Add two columns

3. Multiply a column by a scalar.

It should be clear why 1 leaves rank unchanged, as the order of columns doesn’t affect how many of
them are linearly independent. Further, 2 and 3 amount to linearly combining columns, which will
preserve the columns that are linearly independent. There is an algorithm for converting a matrix
into a form through which the rank can be easily read off, known as ‘upper echelon form’, but it
essentially boils down to fiddling around with operations until there are no elements below the lead
diagonal. I encourage you to find your own algorithm for achieving this1.

1This choice has three motivations. Firstly, finding your own methods helps you remember things. Second, the
algorithm is difficult to convey in words without an example. Lastly, including an example would involve formatting
more matrices than I have the patience for.
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4.3.1 Inverting Matrices

It happens that these elementary operations can be used on a matrix by multiplying with a particular
set of invertible2 elementary operation matrices, which I will call Pi and point you in the direction
of Andre Lukas’ notes to find their specific definitions. This fact has the property that if a matrix
A can be reduced to the identity matrix I through elementary operations, it is invertible:

Pi . . . PjA = I

Pi . . . PjI = A−1

By applying A−1 to both sides. Hence we can find the inverse of an invertible matrix by carrying out
a specific sequence of elementary operations on it until it is I, then carrying out the same sequence
of operations in the same order on I itself.

4.4 Systems of Linear Equations

4.4.1 In Terms of Linear Maps

It should be clear a system of linear equations can be rewritten as a matrix problem. For example,
say we have the following system:

a11x1 + · · ·+ a1nxn = b1

...

am1x1 + · · ·+ amnxn = bm

which is equivalent to a11 . . . a1n
...

. . .
...

am1 . . . amn


x1...
xn

 =

 b1
...
bm


So as this is a matrix problem, it is equivalently a linear map problem, f(x) = b. The crux of the
problem is finding x, the value of which will solve the equation encompassing all specific solutions.
Suppose we manage to guess or otherwise find a single specific solution x0 that solves the equation3.
We have the following situation:

f(x) = b

f(x0) = b

f(x)− f(x0) = 0

f(x− x0) = 0

Now, lets consider an alternative problem, the homogeneous case f(xh) = 0. Clearly this is solved
by the entire kernel space as any vector xh ∈ ker(f) will solve the system. By comparing this
equation with the previous one, we can clearly see

x− x0 = xh

x = xh + x0

This should seem familiar: the solution to this inhomogeneous system is equal to the sum of the
solution of the homogeneous system and a specific solution. Perhaps you’ll see a relation to solving
ODEs4 if I write this statement in a slightly different way:

xGeneral = xCF + xPI

Just to reiterate, the solution to this system is not a vector, but instead a set of vectors. In particular,
the solution set is

X = ker(f) + x0

where x ∈ X solves the system.

2There exists, for each operation, an inverse one - i.e. swap the columns back, etc.
3As a certain mechanics lecturer says, the easiest way to solve a problem is to already know the solution.
4The reason for this similarity will become clearer towards the end of your first year ODEs course.
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4.4.2 Structure of Solutions

It is clear that x0 doesn’t lie within the kernel space. This is because if it did, f(x0) would equal 0 -
but we know it instead equals b. Hence x0 must be linearly independent from all vectors ∈ ker(f).
It’s useful to know the number of free parameters of the solutions. This is a way of measuring the
number of ways of varying vectors within the solution set such that the result still solves the system.
Any vector within the solution set can be constructed by

1. linearly combining vectors within the kernel space

2. adding on the constant vector x0.

As the latter step doesn’t involve any ‘degrees of freedom’ to vary, the number of ways of varying
the vectors within the set depends on the number of ways of varying vectors within the kernel. In
particular, this number of free parameters is equal to the dimension of the kernel, k; this is because
there are k different ‘directions5’ that a vector could be scaled along to create a new vector that
stays within the kernel.

4.4.3 Matrix Rank Considerations

Suppose we have an m× n matrix A, such that A : Fn → Fm with Ax = b. Let’s consider all the
possibilities. Note the maximum rank of this matrix is m, as that’s the dimension of the codomain.

1. Rank(A) = m:
From the dimension theorem the number of free parameters will be n −m. Further, there is
always guaranteed to be a solution as the image is the whole codomain, so there is no possibility
of b being outside the image and therefore unreachable by the action of A.

2. Rank(A) < m:
In this case there may not be a solution to the system as it is possible to choose a b that is
within the codomain but outside the image. Assuming, however, that b ∈ Im(A), we have
(again by the dimension theorem) the number of free parameters as n−Rank(A).

3. n = m and Rank(A) = n:
Now A maps from a column space to itself, and as the dimension of the domain is the same as
that of the codomain, A is bijective and thus invertible. Hence, we have x = A−1b. Further,
as the dimension of the kernel is zero for bijective maps, we have zero free parameters.

4. n = m and Rank(A) < n:
In this case there may not be solutions for the same reason as in number 2. However, if there
are, the number of free parameters is n−Rank(A) by the dimension theorem.

4.4.4 The Augmented Matrix

Suppose we have a system Ax = b, as before. Let A have rank r. We can apply an elementary
operation matrix, P , to both sides. As P is invertible, we can always multiply by P−1 on both sides
to recover the original system. Hence, PAx = Pb should have the same set of solutions as Ax = b.
This inspires us to combine the matrix A and the vector b into one object, known as an augmented
matrix. This is done by adding b in as an extra row to the right of A to form A′ = (A|b). Now, we
can apply the elementary operations on one object and both A and b at the same time. This also
gives us a convenient way of checking if solutions exist.

Claim 46. b ∈ Im(A) ⇐⇒ Rank(A) = Rank(A′)

Proof.

(⇐)

Adding b has no effect on rank. This implies b is a linear combination of the columns of A, which
also span the image of A. Hence, we have b ∈ Im(A).

5It’s more abstract than this, but an intuition from R3 is often useful.
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(⇒)

This is the exact same argument but in reverse. Left as an exercise to the reader6.

Hence, we want to take A′ into a form where rank can be read off, namely the upper echelon form
I helpfully described earlier. Then, we can check its rank to see when solutions exist - helpful in
problems where the examiner has included unknowns in the coefficients of the matrix, and find the
number of free parameters. At this stage, one usually gets tired of row reduction and uses the
fact the system has been simplified, combined with the knowledge of the expected number of free
parameters, to solve the system with explicit calculation (i.e. algebraically) in a slightly less tedious
manner. If one desires to simply read off the solutions, one can make the upper left r × r matrix
into the identity matrix by further row reduction.

4.5 Determinants

4.5.1 Definintion

The determinant is a map from n vectors a1 . . .an ∈ Fn to a number det(a1 . . .an)∈ F with the
following conditions:

1. Linear in each argument

2. Antisymmetric: swapping two arguments introduces a minus sign

3. det(e1 . . . en) = 1 where ei are the standard unit vectors, in ascending order.

Further, the determinant of a matrix is defined as the determinant of its columns, taken as column
vectors.
As a consequence, there can be no repeated arguments in a determinant:

det(. . . ,a, . . . ,a, . . . ) = −det(. . . ,a, . . . ,a, . . . )

Which is only satisfied by det(. . . ,a, . . . ,a, . . . ) = 0.

4.5.2 Permutations

Definition

A permutation is a bijective map from a set of n objects (we will be considering integers) to itself:
σ : {1 . . . n} → {1 . . . n}. They are operations which change the order of the n objects. Two
permutations σ1 and σ2 can be composed to form a third permutation equivalent to applying one
and then the other: σ3 = σ2 ◦ σ1

Transpositions

A permutation wherein two numbers are swapped with all others unaffected is known as a transposi-
tion. It can be proven7 that all permutations can be written as compositions of this most basic type
of permutation. However, there isn’t a unique way of making a given permutation from composing
transpositions. As composing a transposition twice is the identity permutation (it flips and then
un-flips again) we can write τ2◦τ1 = τ2◦τ1◦τ1◦τ1 as equivalent permutations, if τi is a transposition.
Despite this non-uniqueness, it can be shown that what is unique to a permutation is the sign. The
sign is defined as

sgn(σ) := (−1)k

where k is the number of transpositions that are required to be composed to create σ. The number
of transpositions compositions may vary for a given permutation, but if that number is even for one,
it’s even for all. Obviously the same applies for odd numbers. Using this definition, there are two
clear consequences that can be proved by simply considering the number of transpositions:

6A reader who must in this case be bored beyond belief. Trust me, it is literally the same argument. It has taken
me longer to add this pointless footnote than to type out the proof, which just goes to show how bored I am.

7See Andre Lukas’ notes
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1. sgn(σ2 ◦ σ1) = sgn(σ2)sgn(σ1)

2. sgn(σ) = sgn(σ−1)

4.5.3 General Form Derivation

By definition it is only possible to take a determinant of a square matrix. If its columns are ∈ Fn,
it has n rows. The map is also of n objects, so the matrix must have n columns. Let A(ij) be the
element in the ith row and jth column of A.

det(A) = det(A1, . . . ,Ai, . . . ,An)

= det

 n∑
j1=1

A(j11)ej1 , . . . ,

n∑
jn=1

A(jnn)ejn


=

n∑
j1...jn

n∏
k=1

A(jkk)det(ej1 , . . . , ejn)

When two ji are the same, the determinant vanishes. This means the sum is only nonzero when the
set {j1 . . . jn} is a permutation of the set {1 . . . n} as this will ensure there are no repeat arguments.
Let this permutation be σ, such that ji = σ(i). Also, let Sn be the set of all permutations of n
integers, such that

∑
σ∈Sn

denotes a sum for each individual permutation in the set.

=
∑
σ∈Sn

n∏
k=1

A(σ(k)k)det(eσ(1), . . . , eσ(n))

We want to get rid of the determinant by converting it to det(e1 . . . en) = 1. This can be done by
permuting the columns with σ−1 so that the ith column is moved to the σ−1(i)th column. This puts
the columns in ascending order. However, this will require a certain number of flips of the arguments
of the determinant8, leading to a factor of sgn(σ−1) = sgn(σ) being introduced within the sums:

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
k=1

A(σ(k)k)

This can be understood as the following algorithm: choose entries such that no two entries lie in the
same row, and take their product, multiplying by the sign of the permutation taken. Repeat for all
possible choices and then add them up.

Another way of writing this is with the Levi-Civita symbol, which will be revisited later. This
symbol includes the sign of the permutation. It is defined as follows:

εj1...jn :=


1 if j1 . . . jn is an even permutation of 1 . . . n

−1 if j1 . . . jn is an odd permutation of 1 . . . n

0 otherwise

(4.1)

det(A) =
∑

j1...jn

εj1...jn

n∏
k=1

A(jkk)

4.5.4 Consequences

A quick one without a rigorous proof - the determinant of a triangular matrix, i.e. one with no entries
below the lead diagonal, is the product of the diagonal entries. Think again about the algorithm for
the determinant as choosing entries from rows without repeating the row chosen from and taking
their product, then adding up with the required signs. The first choice will always be the top left
element, (row 1), which cannot be chosen from again, so the second must be the element (2,2), but
now elements from neither row 1 or two can be chosen and the only other choice to prevent the
determinant vanishing is (3,3), ad nauseum.

8p flips, where p is a number of transpositions that could be composed to create σ
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Claim 47. det(A) = det(A†)∗

Proof. Consider again the definition of the determinant det(A) =
∑

σ∈Sn
sgn(σ)

∏n
k=1A(σ(k)k). We

may freely rearrange elements in the product, so lets do so so that they are in order with the
permutations σ(k) going from 1 to n. This means essentially applying the inverse permutation to k.
For example, take the case n = 2. We have

σ1 : {1, 2} → {1, 2} sgn(σ1 = 1)

σ2 : {1, 2} → {2, 1} sgn(σ2 = −1)

det(A) = (A(11)A(22))− (A21A12)

Notice how we could also organise the products so the first index of A is in ascending order in all
cases:

det(A) = (A(11)A(22))− (A12A21)

And notice that, in doing this, we have organised the second index to be in the order of the
first entry being σ−1(1) and the second being σ−1(2). To be precise, the first term is organised
A(1σ−1

1 (1))A(2σ−1
1 (2)) and the second A(1σ−1

2 (1))A(2σ−1
1 (2)). So in general, an equivalent expression for

the determinant involving inverse permutations is

det(A) =
∑

σ−1∈Sn

sgn(σ−1)

n∏
k=1

A(kσ−1(k))

det(A) =

 ∑
σ−1∈Sn

sgn(σ−1)

n∏
k=1

A†
(σ−1(k)k)

∗

Notice as every permutation has an inverse, we can just call σ−1 another permutation within Sn,
say ς.

det(A) =

(∑
ς∈Sn

sgn(ς)

n∏
k=1

A†
(ς(k)k)

)∗

= det(A†)∗

Claim 48. det(AB) = det(A)det(B)

Proof. From the definition of matrix multiplication we can see

(AB)i =

n∑
j=1

BjiA
j

det(AB) = det

 n∑
j1=1

Bj11A
j1 , . . . ,

n∑
jn=1

BjnnA
jn


=
∑

j1...jn

n∏
k=1

Bjkkdet(A
j1 , . . . ,Ajn)

And again the determinant vanishes for repeat arguments, so we can implement permutations and
only consider the determinant of distinct ji column numbers. We also take the step of ordering the
permutations of ji such that they are in ascending order, which will introduce a factor of sgn(σ).

=
∑
σ∈Sn

sgn(σ)

n∏
k=1

Bjkkdet(A
1, . . . ,An)

= det(A)det(B)
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Claim 49. A bijective (invertible) ⇐⇒ det(A) ̸= 0

Proof.

(⇒)

1 = det(I) = det(AA−1) = det(A)det(A−1) so clearly neither det(A) nor det(A−1) can be zero.
Also, det(A−1)= 1/det(A).

(⇐)

Assume A is not bijective with det(A) ̸= 0. In the case A is not injective, we have dim(ker(A))> 0
which by the dimension theorem leads to rank(A)< n. In the case where A is not surjective we have
straightaway that rank(A)< n. So if A is not bijective, then rank(A)< n. This implies at least one
column in A is a linear combination of the others, which when the sums and coefficients are taken
out of the determinant by its linear property will leave repeat columns inside. This will make the
determinant zero, which leads to a contradiction.

Claim 50. Determinant is independent of basis chosen.

Proof. Let us change the basis of A to A′ such that A′ = PAP−1.

det(A′) = det(P )det(P−1)det(A) = det(A)

Claim 51. The determinant of a unitary matrix is ±1

Proof.

A†A = I

det(A†A) = 1

det(A†)det(A) = 1

det(A)2 = 1

det(A) = ±1

Try and convince yourself that the determinant of a reflection matrix is always -1 and that of
a rotation matrix 1, perhaps using the matrix diag(1, . . . ,−1, . . . , 1). This implies that unitary
matrices can always be written as the composition of a reflection and a rotation matrix.

4.5.5 Laplace’s Expansion of the Determinant

Let the associated matrix, denoted Ã(i,j), be the matrix A with the ith row and jth column replaced
by zeros, except the element Aij which becomes 1. We then carry out i − 1 row swaps and j − 1
column swaps to create the following matrix

B(i,j) =

1 0 . . .
0 A′

(i,j)

...


Where A′

(i,j) is A with the ith row and jth column removed. Recall that one way to think of the
determinant is to take the product of elements from rows with no repeat rows, then add them up
taking permutation signs into account. In this case, there is only one starting row that will not yield
a zero product; the first one. So, we have det(B(i,j)) = det(A′

(i,j)). But det(B(i,j)) is just det(Ã(i,j))

with i+ j − 2 minus signs introduced from the swaps. Hence det(Ã(i,j)) = (−1)i+jdet(A′
(i,j)).

Now, let the cofactor matrix C with entries Cij be defined as

Cij := det(Ã(i,j)) = (−1)i+jdet(A′
(i,j))
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Claim 52. CTA = det(A)I

Proof.

(CTA)ij =
∑
k

CkiAkj

=
∑
k

det(Ã(k,i))Akj

=
∑
k

det(A1, . . . ,Ai−1, ek,A
i+1, . . . ,An)Akj

= det(A1, . . . ,Ai−1,
∑
k

Akjek,A
i+1, . . . ,An)

= det(A1, . . . ,Ai−1,Aj ,Ai+1, . . . ,An)

= δijdet(A) = (det(A)I)ij

Two consequences: first, A−1 = (1/det(A))CT and second that we can write determinants in terms
of sub-determinants, i.e. determinants of smaller matrices. This is known as Laplace’s expansion of
the determinant:

det(A) = (CTA)jj

=
∑
k

CkjAkj

=
∑
k

Akj(−1)k+jdet(A′
(k,j))

4.5.6 Cramer’s Rule

The determinant, rather sneakily, gives us a way of solving systems of linear equations. Suppose we
can write the system as Ax = b, where A is an n × n matrix. Now, define B(j) as A with the jth
column replaced by the vector b. Notice:

det(B(j)) = det(A1, . . . ,b, . . . ,An)

= det(A1, . . . , Ax, . . . ,An)

= det(A1, . . . ,
∑
i

xiA
i, . . . ,An)

=
∑
i

xidet(A
1, . . . ,Ai, . . . ,An)

=
∑
i

xiδijdet(A)

= xjdet(A)

=⇒ xj =
det(B(j))

det(A)

4.6 Rotation Matrices

4.6.1 2 Dimensions

We want to find the matrix that represents a rotation of a vector in 2D by a given angle. Considering
real matrices only, we want a map from F 2 → F 2 so we need a 2x2 matrix:

R =

(
a b
c d

)
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If a matrix rotates vectors, it should leave lengths and angles invariant, so it should leave the scalar
product invariant. We can then impose the condition that R is unitary, and further that det(R) =
1

RTR =

(
a c
b d

)(
a b
c d

)
=

(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)
=

(
1 0
0 1

)

=⇒


a2 + c2 = 1

ab = −cd
b2 + d2 = 1

ad− bc = 1

From which a = d and b = −c follows. We can guess the solution as a = d = cos θ and b = −c =
− sin θ, which satisfies all 4 equations. Hence, we can write the matrix as:

R =

(
cos θ − sin θ
sin θ cos θ

)
Now, we can use the formula for the angles between vectors to find the cosine of the angle of an
arbitrary vector with that same vector, but rotated by R. It is trivial, if a little tedious, to show
that the angle between them under the action of R is in fact θ as we would expect, confirming that
R is a rotation matrix.

4.6.2 3 Dimensions

By considering the columns of matrices as images of the basis vectors, it should be clear that the
following are rotation matrices around the x, y and z axes respectively:

Rx =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


Ry =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


Rz =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1



These matrices don’t commute in general.
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Chapter 5

Eigenvalues and Eigenvectors

5.1 Definitions

for f : V → V v ∈ V is an eigenvector if it satisfies f(v) = λv with λ ∈ F known as the corresponding
eigenvalue.
Given this equation, we can define the eigenspace of a linear map f as follows. We have Id(v) = v
so from the eigenvector equation we have

f(v) = λId(v)

f(v)− λId(v) = 0

(f − λId)(v) = 0 by the linearity of the maps

Hence v is solved by the entire space ker(f − λId), known as the eigenspace, Eigf (λ). This is the
space the eigenvectors for a particular λ live in. If each λ has one associated eigenvector, then
dim(Eigf (λ)) = 1: this is known as the non-degenerate case. If each λ has more than one associated
eigenvector then dim(Eigf (λ) > 1, which is known as the degenerate case.

5.2 Finding Eigenvalues and Eigenvectors

We have seen that all eigenvectors for a particular eigenvaliue live in the kernel of the map f − λId.
We know the kernel of any linear map always contains 0, but if eigenvevtors exist then the kernel
contains not only the zero vector but also other vectors. By claim 18 we can see this means the map
is not injective, and therefore not bijective, and hence not invertible. Then, by claim 49 we can see
that det(f − λId) = 0. This determinant is known as the characteristic polynomial of f .
Suppose we represent f by the matrix A. We have det(A − λId) = 0. Suppose further we change
the basis of A such that A becomes A′:

det(A′ − λId) = 0

det(PAP−1 − λId) = 0

det(PAP−1 − λP IdP−1) = 0

det(P (A− λId)P−1) = 0

det(P )det(P−1)det(A− λId) = 0

det(A− λId) = 0

So the characteristic polynomial, and the resulting eigenvalues that come from it, is basis indepen-
dent.
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5.3 Diagonalisation

5.3.1 Linear Maps

Claim 53. A linear map f : V → V can be diagonalised, i.e. written with a respect to a matrix A
that has entries of only eigenvalues on the diagonal ⇐⇒ eigenvectors of f form a basis of V .

Proof.

(⇒)

We assume f is described by diag(λ1 . . . λn) with respect to a basis vi. By the definition of matrix
columns as the images of basis vectors we have f(vi) = λivi. Therefore the basis vi satisfies the
eigenvector equation and vi are a basis of eigenvectors.

(⇐)

We assume eigenvectors of f form a basis of V . This implies we can write the columns of the matrix
that represents f , i.e. A, with respect to this basis of eigenvectors:

Aj =
∑
i

Aijvi

But from the definition of matrix columns as the images of basis vectors we have

Aj = f(vj) = λjvj

=⇒
∑
i

Aijvi = λjvj

Which is clearly satisfied by A = diag(λ1 . . . λn)

5.3.2 Matrices

Claim 54. The n × n matrix A can be diagonalised, and is done so by Ad = P−1AP where P =
(v1 . . . vn) and vi are eigenvectors of A ⇐⇒ the eigenvectors v1 . . . vn form a basis for Fn.

Proof.

(⇒)

P is given as invertible. This implies P is bijective, so Rank(P ) = n by the dimension theorem.
This means the columns of P are n linearly independent column vectors, which implies vi forms a
basis of Fn by claim 11. We now just need to show that the columns of P are the eigenvectors of A.

We are given that Ad = P−1AP . Let us reframe this by letting P−1 = Q. Hence, we have
Ad = QAQ−1. This describes a change of basis from an unprimed set, which we will call wi, to a
primed set which is the ‘diagonal basis’ that Ad is written with respect to. We will call this primed
set w′

i. Recall from the section on priming matrices that Q−1 has column vectors that are the
coordinates of the primed set with respect to the unprimed one. In other words:

(Q−1)i = w′
i (with respect to wi)

But from the definition of Q−1 we have

w′
i = Pi = vi
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So the primed basis set is vi, the set created by the columns of P . This is the basis with respect to
which A is diagonal. Recall again from the section on priming matrices that ei can be thought of
as the ith primed basis vector written with respect to its own primed set. It should then be clear
why we would be motivated to write Q−1ei = Pei = vi. This has nothing to do with standard
basis - just confusingly writing vectors with respect to their own basis sets. Applying ei to the given
equation we have

Adei = λiei

P−1APei = P−1Avi

P−1Avi = λiei

Applying P to both sides:

Avi = λiPei

Avi = λivi

So vi are eigenvectors.

(⇐)

Define the matrix P = (v1 . . .vn) with columns being eigenvectors of A. As the columns form a
basis of Fn we have Rank(P )= n so the dimension of the domain and codomain are the same, and
P is invertible by claim 22. Now consider the following expression:

APij =
∑
k

AikPkj

=
∑
k

Aik(vj)k

= (Avj)i

= (λjvj)i

= λjPij

Using this result in the following expression:

(P−1AP )ij =
∑
k

(P−1)ik(AP )kj

=
∑
k

(P−1)ikλjPkj

= λj
∑
k

(P−1)ikPkj

= λj(P
−1P )ij

= λjδij

Which implies P−1AP = diag(λ1 . . . λn).

5.4 Consequences

A couple of useful results arise due to the basis independence of the trace and determinant. We have
det(A) = det(Ad)=

∏
i λi and Tr(A) = Tr(Ad)=

∑
i λi.

Claim 55. f : V → V is self-adjoint =⇒ all eigenvalues are real.
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Proof. Let v be an eigenvector of f with eigenvalue λ.

λ⟨v,v⟩ = ⟨v, λv⟩
= ⟨v, f(v)⟩
= ⟨f(v),v⟩
= ⟨λv,v⟩
= λ∗⟨v,v⟩

=⇒ λ = λ∗

Claim 56. f : V → V is self-adjoint =⇒ all eigenvectors are orthogonal.

Proof.

We have f(v1) = λ1v1 and f(v2) = λ2v2 with λ1 ̸= λ2. We can create the following expression:

(λ1 − λ2)⟨v1,v2⟩ = λ1⟨v1,v2⟩ − λ2⟨v1,v2⟩

As eigenvalues are real:

= ⟨λ1v1,v2⟩ − ⟨v1, λ2v2⟩
= ⟨f(v1),v2⟩ − ⟨v1, f(v2)⟩
= ⟨v1, f(v2)⟩ − ⟨v1, f(v2)⟩ = 0

=⇒ ⟨v1,v2⟩ = 0

As we have the condition λ1 ̸= λ2.

Claim 57. f : V → V is unitary =⇒ all eigenvectors have unit magnitude.

Proof.

Let v be the corresponding eigenvector for λ.

|λ|2⟨v,v⟩ = λλ∗⟨v,v⟩
= ⟨λv, λv⟩
= ⟨f(v), f(v)⟩
= ⟨v,v⟩

Due to the positive definiteness property we can divide both sides by the scalar product, leaving the
required result.

5.5 Normal Maps

A normal map f is one that satisfies f ◦ f† = f† ◦ f , or equivalently one for which the commutator
of f and f†, [f, f†] = f ◦ f† − f† ◦ f is zero.

Claim 58. Let V be a vector space over C equipped with a hermitian scalar product with f : V → V
a normal linear map. If λ is the eigenvalue of f for v then λ∗ is the eigenvalue of f† for v.
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Proof.

Convince yourself from the properties of adjoint maps that (f − λId)† = (f† − λ∗Id). Then we have

det(f − λId) = 0 =⇒ det(f − λId)† = 0∗

=⇒ det(f† − λ∗Id) = 0

Claim 59. Let V be a vector space over C equipped with a hermitian scalar product. f : V → V is
normal ⇐⇒ there exists an orthonormal basis of eigenvectors for V .

Proof. I couldn’t find a proof of this that I understood, or didn’t have an obvious loss of generality
somewhere. As a result of this I don’t feel confident explaining the steps of such a proof and have
decided to omit this particular proof from this text for the time being. If you are interested to find
one, look into the spectral theorem.

5.6 Simultaneous Diagonalisation

The proof I will present uses the simplification that one of the matrices involved doesn’t have
degenerate eigenvalues. For a good proof of the general case, consult the video on simultaneous
diagonalisation from the youtube channel Dr Peyam.

Claim 60. Let A and B be diagonalisable n × n matrices. A and B commute ⇐⇒ A,B are
simultaneously diagonalisable by the matrix P such that Ad = P−1AP and Bd = P−1BP .

Proof.

(⇐)

AB −BA = PAdP
−1PBdP

−1 − PBdP
−1PAdP

−1

= PAdBdP
−1 − PBdAdP

−1

Diagonal matrices commute:

= PAdBdP
−1 − PAdBdP

−1

= 0

=⇒ AB = BA

(⇒)

Since we are given that A and B be diagonalisable matrices, the eigenvectors of A form a basis of
Fn. The eigenvectors vi satisfy Avi = λivi. We have

A(Bvi) = BAvi

= λi(Bvi)

Which implies Bvi is an eigenvector of A with the eigenvalue λi. We assumed that A doesn’t have
degenerate eigenvalues, i.e. it doesn’t have multiple eigenvectors for the same eigenvalue. This
implies that Bvi must be the same eigenvector as vi as they correspond to the same eigenvalue λi.
Hence, Bvi must be a simple scaling of vi, i.e.

Bvi = µivi

for some scalar µi. Clearly this shows that A and B share common eigenvectors vi (albeit with
different eigenvalues), and as these eigenvectors form a basis A and B will both be diagonalisable
by the same matrix P .
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5.7 Applications

5.7.1 Quadratic Forms

A quadratic form is an object q(x) = xTAx such that A is a real, symmetric, n×n matrix. We can
use diagonalisation to rewrite q(x):

A = PAdP
T

with the transpose being used instead of the inverse as A is a normal matrix, which implies it has an
orthonormal basis of eigenvectors. This implies P is unitary and therefore that P−1 = P †. To show
that all eigenvectors have real coefficients, consider that they satisfy (A−λI)v = 0. If the coefficients
of v are complex, i.e. vk = ak + ibk, we have

∑
k(A− λI)ikak + i

∑
k(A− λI)ikbk = 0 =⇒ bk = 0.

Hence P = P ∗ so P † = PT . Hence:

q(x) = xTPAdP
Tx

= (PTx)TAdP
Tx

= yTAdy

=
∑
i

λiy
2
i

So we have chosen a new coordinate system, yi, such that cross terms have been eliminated.

Suppose we have a quadratic form ax21+ bx1x2+ cx
2
2 = d. We may rewrite this in symmetric matrix

form: (
x1 x2

)( a b/2
b/2 c

)
︸ ︷︷ ︸

A

(
x1
x2

)
= d

Suppose A has eigenvalues λ1, λ2. After diagonalisation, we have

λ1y
2
1 + λ2y

2
2 = d

Which is the form of an ellipse or hyperbola in yi. In particular, when λ1 = λ2, we have a circle,
when λ1 ̸= λ2 with the same sign as d, the equation is that of an ellipse and finally when λ1 ̸= λ2
and they have opposite signs it’s that of a hyperbola.
We can also find the lengths of the semi axes in the case of an ellipse. By comparison to the general

form of an ellipse, it is clear that li =
√

d
λi
. We would like to find the direction of the axes in this

case. Recall that this general form of an ellipse is centered at the origin, with the l1 axis aligned
with the y1 axis. Hence, the directions of the axes are the directions of the yi axes. As y = PTx,
we can apply P to both sides to get x = Py; we can interpret this as the relationship that gives
the coordinates with respect to the xi axes of a vector given with respect to the yi axes. When in
the yi system, the semi axes are along ei, so to find these coordinates in the xi system we can do
Pei = vi. Hence in the xi system the semi axes lie along the eigenvectors of A.

5.7.2 Solving Systems of Linear Differential Equations

It is possible to write a linear nth order ODE in terms of a system of first order differential equations.
For example consider the homogeneous case;

a0x0 + a1x
′
0 + a2x

′′
0 + · · ·+ anx

(n)
0 = 0

x1 = x′0
x2 = x′1 = x′′0
...

xn−1 = x′n−2 = x
(n−1)
0

a0x0 + a1x1 + · · ·+ an−1xn−1 + anx
′
n−1 = 0
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Which is a system of n first order coupled linear differential equations. We can represent this in
matrix form: 

x′0
x′1
...

x′n−2

x′n−1

 =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
...
0 0 0 0 . . . 1

− a0

an
− a1

an
− a2

an
− a3

an
. . . −an−1

an




x0
x1
...

xn−2

xn−1


You can clearly see how diagonalising the system would decouple it. Let’s consider the 2nd order
case:

a0x0 + a1x
′
0 + x′′0 = 0{

x1 = x′0
x′1 = −a0x0 − a1x1

=⇒
(
x′0
x′1

)
︸ ︷︷ ︸

x′

=

(
0 1

−a0 −a1

)
︸ ︷︷ ︸

A

(
x0
x1

)
︸ ︷︷ ︸

x

Now suppose we know A has eigenvalues λ1,2. We may diagonalise it:

x′ = PAdP
−1x

P−1x′ = AdP
−1x

Now let P−1x = y. As P−1 is a constant with respect to the independent variable (say t), we can
take it inside the derivative operator:

y′ = Ady

y′i = λiyi

=⇒ yi = cie
λit

=⇒ x = Py =
∑
i

cie
λitvi

Which recovers the standard exponential solution of this type of differential equation. A slightly
more complicated scenario is the case of repeated eigenvalues. In this case one may add in a factor
of t in the right place to generate a linearly independent solution, but I’ll leave that to your ODE
lecturer to explain.

5.7.3 Repeated Multiplication of Matrices

Consider a diagonalisable matrix A. If we want to compute An, we can diagonalise A:

An = (PAdP−1)n

= PAdP
−1P . . . P−1PAdP

−1

The P and P−1 matrices that are sandwiched together cancel out, leaving n lots of Ad in the middle.

= PAn
dP

−1

And as Ad is diagonal, we can just raise its entries to the nth power. Recall its entries are its
eigenvalues:

= Pdiag(λni )P
−1

This has useful consequences in computing functions of matrices. This is because we may, in some
cases, write the functions as Taylor series, and then apply our diagonalisation technique to the
polynomial of matrices.
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Chapter 6

Vector Identities and Geometry

6.1 Vector Identities

6.1.1 Kronecker Delta Symbol

δij =

{
1 i = j

0 i ̸= j

This symbol has the useful property of index replacement. Using the Einstein implied summation
convention hereon we have δijai = aj .

6.1.2 Levi-Civita Symbol

εj1...jn :=


1 if j1 . . . jn is an even permutation of 1 . . . n

−1 if j1 . . . jn is an odd permutation of 1 . . . n

0 otherwise

We will now verify a useful property of the symbol.

We propose the relationship

εijkεlmn = det

δil δim δin
δjl δjm δjn
δkl δkm δkn


First take the case two of ijk or two of lmn are equal. By definition this makes the LHS = 0, and
will create repeat rows or columns in the determinant which makes RHS = 0. Next, consider ijk and
lmn both = 123. This makes LHS = 0 and RHS = det(I) = 1. Now, the crucial step is noticing that
any permutation of 123 can be achieved by repeatedly swapping any of ijk or any of lmn. Notice
that both sides will be antisymmetric under these swaps (as the determinant is the same as the
determinant of the transpose, and swapping columns introduces a minus sign); in a sense they start
equal at the permutation 123 and the same effect ‘happens’ to them no matter how we manipulate
the permutations thereafter - keeping them equal. Hence in all cases the equality holds.

From this we can derive a number of useful facts;

1. εijkεilm = δjlδkm − δjmδkl

2. εijkεijm = 2δkm

3. εijkεijk = 6

Where 1 follows from the expansion and subsequent contraction of the determinant and 2 follows from
multiplying both sides of 1 by δjl, and replacing indices. Finally, 3 follows from 2 by substitution.
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6.1.3 Identities and Proofs

We can use these symbols to define the cross product (a × b)i = εijkajbk. This can be shown by
comparison of the standard determinant definition of the cross product with the definition of the
determinant that uses ε. Notice also that the dot product may be written a · b = δijaibj .

Claim 61. The following statements hold for arbitrary vectors;

1. a× b = −b× a

2. a× (b+ c) = (a× b) + (a× c)

3. a× βb = β(a× b)

4. e1 × e2 = e3 e2 × e3 = e1 e3 × e1 = e2

5. a× a = 0

6. a× (b× c) = (a · c)b− (b · a)c

7. (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)

8. |a× b|2 = |a|2|b|2 − (a · b)2

Proof.

(1)

(a× b)i = εijkajbk

= −εikjbkaj
= −(b× a)i

(2)

(a× (b+ c))i = εijkai(bj + cj)

= εijkaibj + εijkaicj

= (a× b)i + (a× c)i

(3)

(a× βb)i = εijkajβbk

= βεijkajbk

= β(a× b)i

(4)

(ei)j = δij

=⇒ (ep × eq)i = εijk(ep)j(eq)k

= εijkδpjδqk

= εipq from which the required results follow.

(5)

(a× a) = −(a× a) = 0 by the anticommutative property.

(6)

(a× (b× c))i = εijkaj(b× c)k

= εijkajεklmblcm

= εkijεklmajblcm

= (δilδjm − δjlδim)ajblcm

= amcmbi − alblci

= ((a · c)b− (a · b)c)i
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(7)

(a× b) · (c× d) = (a× b)i(b× d)i

= εijkajbkεilmcldm

= (δjlδkm − δklδjm)ajbkcldm

= albmcldm − ajblcldj

= (a · c)(b · d)− (a · d)(c · b)

(8)

Use the result from (7) with c = a and d = b.

6.2 Vector Geometry

6.2.1 Geometrical Meaning of the Cross Product

Consider the quantity a · (b× c):

a · (b× c) = ai(b× c)i

= ϵijkaibjck

= det(a,b, c)

Which will vanish if any of the vectors are equal. This implies that the cross product of any two
vectors is orthogonal to both of those vectors. We can also find the magnitude of the cross product
from claim 61:

|a× b| = (|a|2|b|2 − (|a||b| cos θ)2) 1
2 = |a||b| sin θ

from which we can conclude that a× b = |a||b| sin θn̂ where n̂ is the unit vector normal to both a
and b. The direction of this vector can be found using the right hand rule or corkscrew rule.

6.2.2 Minimum Distance Between a Line and Point

Consider a line r(t) = a+tb. We would like to find the minimum distance between r and a point p0.
First we begin by defining the vector p := a−p0 and the distance squared function, D2 := |r−p0|2.
We have

D2 = |p+ tb|2

= ⟨p+ tb,p+ tb⟩
= ⟨p+ tb,p⟩+ t⟨p+ tb,b⟩
= |p|2 + 2t⟨b,p⟩+ t2|b|2 taking derivatives:

2D
dD

dt
= 2⟨b,p⟩+ 2t|b|2 = 0 for stationary point

=⇒ tmin = −⟨b,p⟩
|b|2

If you’d like, check second derivatives to ensure this is a minimum point. Now subbing back in:

D2
min = |p|2 − 2⟨b,p⟩2

|b|2
+

⟨b,p⟩2

|b|2

=
1

|b|2
(|p|2|b|2 − ⟨b,p⟩2)

=
|p× b|2

|b|2

Dmin =
|p× b|
|b|
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6.2.3 Intersection of Line and Plane

Consider the line rl = p + tq and the plane rp = a + bt1 + ct2. To find the intersection set them
equal:

p+ tq = a+ bt1 + ct2

p− a = bt1 + ct2 − tq

and dot both sides with (b× c):

(p− a) · (b× c) = −tq · (b× c)

t =
(a− p) · (b× c)

q · (b× c)

6.2.4 Minimum Distance Between Lines

For i = 1, 2 we have the lines ri = pi + tiqi. Introduce the unit vector perpendicular to both,
n = q1×q2

|q1×q2|
. We have the distance between the lines at some value of ti = t′i where said distance is

minimised:

r1 − r2 = p1 − p2 + q1t
′
1 − q2t

′
2

= ±dminn

Now dot both sides with n:

(p1 − p2) · n = ±dmin

dmin =

∣∣∣∣ (p1 − p2) · (q1 × q2)

|q1 × q2|

∣∣∣∣
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